Bone turnover markers: use in osteoporosis (original) (raw)
Eriksen, E. F., Axelrod, D. W. & Melsen, F. Skeletal growth, modeling and remodeling in Bone Histomorphometry 1–2 (Raven Press, New York, 1994). Google Scholar
Delmas, P. D., Eastell, R., Garnero, P., Seibel, M. J. & Stepan, J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos. Int.11 (Suppl. 6), S2–S17 (2000). ArticlePubMed Google Scholar
Singer, F. R. & Eyre, D. R. Using biochemical markers of bone turnover in clinical practice. Cleve. Clin. J. Med.75, 739–750 (2008). ArticlePubMed Google Scholar
Brown, J. P. et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin. Biochem.42, 929–942 (2009). ArticleCASPubMed Google Scholar
Kucharz, E. J. The Collagens: Biochemistry and Pathophysiology (Springer-Verlag, Heidelberg, 1992). Book Google Scholar
Black, D., Duncan, A. & Robins, S. P. Quantitative analysis of the pyridinium crosslinks of collagen in urine using ion-paired reversed-phase high performance chromatography. Anal. Biochem.169, 197–203 (1988). ArticleCASPubMed Google Scholar
Colwell, A., Russell, R. G. G. & Eastell, R. Factors affecting the assay of urinary 3-hydroxy pyridinium cross-links of collagen as markers of bone resorption. Eur. J. Clin. Invest.23, 341–349 (1993). ArticleCASPubMed Google Scholar
Fujimoto, D., Suzuki, M., Uchiyama, A., Miayamoto, S. & Inoue, T. Analysis of pyridinoline, a crosslinking compound of collagen fibres, in human urine. J. Biochem.94, 1133–1136 (1983). ArticleCASPubMed Google Scholar
Eyre, D. R., Koob, T. J. & Van Ness, K. P. Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid chromatography. Anal. Biochem.137, 380–388 (1984). ArticleCASPubMed Google Scholar
Robins, S. P. et al. Direct enzyme linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J. Bone Miner. Res.9, 1643–1649 (1994). ArticleCASPubMed Google Scholar
Fledelius, C., Johansen, J. S., Cloos, P. A. C., Bonde, M. & Qvist, P. Characterization of urinary degradation products derived from type I collagen: identification of a β isomerized ASP-GLY sequence within the C-terminal telopeptide(α-I) region. J. Biol. Chem.272, 9755–9763 (1997). ArticleCASPubMed Google Scholar
Hanson, D. A. et al. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen crosslinked N-telopeptides in urine. J. Bone Miner. Res.7, 1251–1258 (1992). ArticleCASPubMed Google Scholar
Clemens, J. D., Herrick, M. V., Singer, F. R. & Eyre, D. R. Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin. Chem.43, 2058–2063 (1997). CASPubMed Google Scholar
Bonde, M., Qvist, P., Fledelius, C., Riis, B. J. & Christiansen, C. Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin. Chem.40, 2022–2025 (1994). CASPubMed Google Scholar
Risteli, J., Elomaa, I., Niemi, S., Novamo, A. & Risteli, L. Radioimmunoassay for the pyridinoline cross-linked carboxy- terminal telopeptide of Type I collagen degradation. Clin. Chem.39, 635–640 (1993). CASPubMed Google Scholar
Garnero, P. et al. Decreased β-isomerization of the C-terminal telopeptide of type I collagen αI chain in Paget's disease of bone. J. Bone Miner. Res.12, 1407–1415 (1997). ArticleCASPubMed Google Scholar
Garnero, P. et al. Effects of PTH and alendronate on type I collagen isomerization in postmenopausal women with osteoporosis: the PaTH study. J. Bone Miner. Res.23, 1442–1448 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vasikaran, S. et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin. Chem. Lab Med.49, 1271–1274 (2011). ArticleCASPubMed Google Scholar
Vasikaran, S. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int.22, 391–420 (2011). ArticleCASPubMed Google Scholar
Garnero, P. et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J. Bone Miner. Res.18, 859–867 (2003). ArticleCASPubMed Google Scholar
Halleen, J. M., Tiitinen, S. L., Ylipahkala, H., Fagerlund, K. M. & Vaananen, H. K. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin. Lab52, 499–509 (2006). CASPubMed Google Scholar
Hannon, R. A. et al. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone34, 187–194 (2004). ArticleCASPubMed Google Scholar
Meier, C. et al. Serum cathepsin K concentrations reflect osteoclastic activity in women with postmenopausal osteoporosis and patients with Paget's disease. Clin. Lab52, 1–10 (2006). CASPubMed Google Scholar
Melkko, J., Niemi, S., Risteli, L. & Risteli, J. Radioimmunoassay for the carboxyterminal propeptide of human type I procollagen (PICP). Clin. Chem.36, 1328–1332 (1990). CASPubMed Google Scholar
Melkko, J. et al. Immunoassay for intact amino-terminal propeptide of human type I procollagen. Clin. Chem.42, 947–954 (1996). CASPubMed Google Scholar
Calvo, M. S., Eyre, D. R. & Gundberg, C. M. Molecular basis and clinical application of biological markers of bone turnover. Endocrine Rev.17, 333–368 (1996). CAS Google Scholar
Seibel, M. J. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin. Biochem. Rev.26, 97–122 (2005). PubMedPubMed Central Google Scholar
Price, P. A. & Nishimoto, S. K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc. Natl Acad. Sci. USA77, 2234–2238 (1980). ArticleCASPubMedPubMed Central Google Scholar
Cloos, P. A. & Christgau, S. Characterization of aged osteocalcin fragments derived from bone resorption. Clin. Lab.50, 585–598 (2004). CASPubMed Google Scholar
Mokuda, S. et al. Postmenopausal women with rheumatoid arthritis who are treated with raloxifene or alendronate or glucocorticoids have lower serum undercarboxylated osteocalcin (ucOC) levels. J. Endocrinol. Invest. (2011).
Vergnaud, P. et al. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS study. J. Clin. Endocrinol. Metab.82, 719–724 (1997). CASPubMed Google Scholar
Clemens, T. L. & Karsenty, G. The osteoblast: an insulin target cell controlling glucose homeostasis. J. Bone Miner. Res.26, 677–680 (2011). ArticleCASPubMed Google Scholar
Vesper, H. W. et al. Assessment and recommendations on factors contributing to preanalytical variability of urinary pyridinoline and deoxypyridinoline. Clin. Chem.48, 220–235 (2002). CASPubMed Google Scholar
Hannon, R. & Eastell, R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos. Int.11 (Suppl. 6), S30–S44 (2000). ArticlePubMed Google Scholar
Jensen, J.-E. B., Kollerup, G., Sorensen, H. A. & Sorensen, O. H. Intraindividual variability in bone markers in urine. Scand. J. Clin. Lab. Invest.57, 29–34 (1997). Article Google Scholar
Garnero, P., Borel, O. & Delmas, P. D. Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin. Chem.47, 694–702 (2001). CASPubMed Google Scholar
Garnero, P., Vergnaud, P. & Hoyle, N. Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin. Chem.54, 188–196 (2008). ArticleCASPubMed Google Scholar
Bergmann, P. et al. Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int. J. Clin. Pract.63, 19–26 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, A. J., Hodges, S. & Eastell, R. Measurement of osteocalcin. Ann. Clin. Biochem.37, 432–446 (2000). ArticlePubMed Google Scholar
Wichers, M., Schmidt, E., Bidlingmaier, F. & Klingmuller, D. Diurnal rhythm of CrossLaps in human serum. Clin. Chem.45, 1858–1860 (1999). CASPubMed Google Scholar
Qvist, P., Christgau, S., Pedersen, B. J., Schlemmer, A. & Christiansen, C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone31, 57–61 (2002). ArticleCASPubMed Google Scholar
Clowes, J. A. et al. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone30, 886–890 (2002). ArticleCASPubMed Google Scholar
Henriksen, D. B. et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J. Bone Miner. Res.18, 2180–2189 (2003). ArticleCASPubMed Google Scholar
Sato, J., Hasegawa, K., Tanaka, H. & Morishima, T. Urinary N-telopeptides of type I collagen in healthy children. Pediatr. Int.52, 398–401 (2010). ArticleCASPubMed Google Scholar
Lapillonne, A., Travers, R., Dimaio, M., Salle, B. L. & Glorieux, F. H. Urinary excretion of cross-linked N-telopeptides of type 1 collagen to assess bone resorption in infants from birth to 1 year of age. Pediatrics110, 105–109 (2002). ArticlePubMed Google Scholar
Naylor, K. E., Iqbal, P., Fledelius, C., Fraser, R. B. & Eastell, R. The effect of pregnancy on bone density and bone turnover. J. Bone Miner. Res.15, 129–137 (2000). ArticleCASPubMed Google Scholar
Veitch, S. W. et al. Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos. Int.17, 364–372 (2006). ArticleCASPubMed Google Scholar
Ivaska, K. K., Gerdhem, P., Akesson, K., Garnero, P. & Obrant, K. J. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J. Bone Miner. Res.22, 1155–1164 (2007). ArticleCASPubMed Google Scholar
Bahar, S. et al. Comparison of the acute alterations in serum bone turnover markers and bone mineral density among women with surgical menopause. Eur. J. Obstet. Gynecol. Reprod. Biol.159, 194–197. (2011). ArticlePubMed Google Scholar
Prior, J. C. et al. Premenopausal ovariectomy-related bone loss: a randomized, double-blind, one-year trial of conjugated estrogen or medroxyprogesterone acetate. J. Bone Miner. Res.12, 1851–1863 (1997). ArticleCASPubMed Google Scholar
Glover, S. J., Garnero, P., Naylor, K., Rogers, A. & Eastell, R. Establishing a reference range for bone turnover markers in young, healthy women. Bone42, 623–630 (2008). ArticleCASPubMed Google Scholar
Adami, S. et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif. Tissue Int.82, 341–347 (2008). ArticleCASPubMed Google Scholar
Horowitz, G. L. Estimating reference intervals. Am. J. Clin. Pathol.133, 175–177 (2010). ArticlePubMed Google Scholar
Glover, S. J. et al. Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J. Bone Miner. Res.24, 389–397 (2009). ArticlePubMed Google Scholar
Seibel, M. J., Lang, M. & Geilenkeuser, W. J. Interlaboratory variation of biochemical markers of bone turnover. Clin. Chem.47, 1443–1450 (2001). CASPubMed Google Scholar
United Kingdom National External Quality Assessment Service (online) (2010).
Walsh, L. J., Wong, C. A., Pringle, M. & Tattersfield, A. E. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. BMJ313, 344–346 (1996). ArticleCASPubMedPubMed Central Google Scholar
Osteoporosis prevention, diagnosis, and therapy. JAMA285, 785–795 (2001).
Van Staa, T. P. et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum.48, 3224–3229 (2003). ArticleCASPubMed Google Scholar
Dovio, A. et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J. Clin. Endocrinol. Metab.89, 4923–4928 (2004). ArticleCASPubMed Google Scholar
Heuck, C. & Wolthers, O. D. A placebo-controlled study of three osteocalcin assays for assessment of prednisolone-induced suppression of bone turnover. J. Endocrinol.159, 127–131 (1998). ArticleCASPubMed Google Scholar
KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. S1–S130 (2009).
Seiler, S., Heine, G. H. & Fliser, D. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int. Suppl. S34–S42 (2009).
Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol.18, 2600–2608 (2007). ArticleCASPubMed Google Scholar
Garnero, P., Sornay-Rendu, E., Chapuy, M. C. & Delmas, P. D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res.11, 337–349 (1996). ArticleCASPubMed Google Scholar
Lofman, O., Magnusson, P., Toss, G. & Larsson, L. Common biochemical markers of bone turnover predict future bone loss: a 5-year follow-up study. Clin. Chim. Acta356, 67–75 (2005). ArticleCASPubMed Google Scholar
Rosen, C. J., Chesnut III, C. H. & Mallinak, N. J. S. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J. Clin. Endocrinol. Metab.82, 1904–1910 (1997). CASPubMed Google Scholar
Rogers, A., Hannon, R. A. & Eastell, R. Biochemical markers as predictors of rates of bone loss after menopause. J. Bone Miner. Res.15, 1398–1404 (2000). ArticleCASPubMed Google Scholar
Eastell, R. et al. Bone turnover markers and bone mineral density response with risedronate therapy: relationship with fracture risk and patient adherence. J. Bone Miner. Res.26, 1662–1669 (2011). ArticleCASPubMed Google Scholar
Bauer, D. C. et al. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab91, 1370–1375 (2006). ArticleCASPubMed Google Scholar
Garnero, P. et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J. Bone Miner. Res.11, 1531–1538 (1996). ArticleCASPubMed Google Scholar
van Daele, P. L. et al. Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. BMJ312, 482–483 (1996). ArticleCASPubMedPubMed Central Google Scholar
Garnero, P., Sornay-Rendu, E., Claustrat, B. & Delmas, P. D. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J. Bone Miner. Res.15, 1526–1536 (2000). ArticleCASPubMed Google Scholar
Gerdhem, P. et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J. Bone Miner. Res.19, 386–393 (2004). ArticleCASPubMed Google Scholar
Ivaska, K. K., Gerdhem, P., Vaananen, H. K., Akesson, K. & Obrant, K. J. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J. Bone Miner. Res.25, 393–403 (2010). ArticleCASPubMed Google Scholar
Garnero, P., Cloos, P., Sornay-Rendu, E., Qvist, P. & Delmas, P. D. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J. Bone Miner. Res.17, 826–833 (2002). ArticleCASPubMed Google Scholar
Johnell, O. et al. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab.87, 985–992 (2002). ArticleCASPubMed Google Scholar
Ross, P. D. et al. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos. Int.11, 76–82 (2000). ArticleCASPubMed Google Scholar
Bjarnason, N. H. et al. Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos. Int.12, 922–930 (2001). ArticleCASPubMed Google Scholar
Bauer, D. C. et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J. Bone Miner. Res.19, 1250–1258 (2004). ArticlePubMed Google Scholar
Delmas, P. D. et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J. Bone Miner. Res.24, 1544–1551 (2009). ArticleCASPubMed Google Scholar
Reginster, J. Y. et al. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone34, 344–351 (2004). ArticleCASPubMed Google Scholar
Sarkar, S. et al. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J. Bone Miner. Res.19, 394–401 (2004). ArticlePubMed Google Scholar
Bauer, D. C. et al. Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J. Bone Miner. Res.24, 2032–2038 (2009). ArticleCASPubMedPubMed Central Google Scholar
Riis, B. J., Hansen, M. A., Jensen, A. M., Overgaard, K. & Christiansen, C. Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone19, 9–12 (1996). ArticleCASPubMed Google Scholar
Johnell, O. et al. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos. Int.13, 523–526 (2002). ArticleCASPubMed Google Scholar
Christiansen, C. et al. Dose dependent effects on bone resorption and formation of intermittently administered intravenous ibandronate. Osteoporos. Int.14, 609–613 (2003). ArticleCASPubMed Google Scholar
Hodsman, A. B. et al. Efficacy and safety of human parathyroid hormone-(1–84) in increasing bone mineral density in postmenopausal osteoporosis. J. Clin. Endocrinol. Metab88, 5212–5220 (2003). ArticleCASPubMed Google Scholar
Eastell, R. et al. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J. Bone Miner. Res.26, 1303–1312 (2011). ArticleCASPubMed Google Scholar
Lewiecki, E. M. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat. Rev. Rheumatol.7, 631–638 (2011). ArticleCASPubMed Google Scholar
Bouxsein, M. L. & Delmas, P. D. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective. J. Bone Miner. Res.23, 1155–1167 (2008). ArticlePubMedPubMed Central Google Scholar
Lewiecki, E. M. Benefits and limitations of bone mineral density and bone turnover markers to monitor patients treated for osteoporosis. Curr. Osteoporos. Rep.8, 15–22 (2010). ArticlePubMed Google Scholar
Hochberg, M. C. et al. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J. Clin. Endocrinol. Metab.87, 1586–1592 (2002). ArticleCASPubMed Google Scholar
Bell, K. J. et al. The potential value of monitoring bone turnover markers among women on alendronate. J. Bone Miner. Res.http://dx.doi.org/10.1002/jbmr.525 (2011).
de Papp, A. E. et al. A cross-sectional study of bone turnover markers in healthy premenopausal women. Bone40, 1222–1230 (2007). ArticlePubMed Google Scholar
Delmas, P. D. et al. Effect of monitoring bone turnover markers on persistence with risedronate treatment of postmenopausal osteoporosis. J. Clin. Endocrinol. Metab92, 1296–1304 (2007). ArticleCASPubMed Google Scholar
Clowes, J. A., Peel, N. F. & Eastell, R. The impact of monitoring on adherence and persistence with antiresorptive treatment for postmenopausal osteoporosis: a randomized controlled trial. J. Clin. Endocrinol. Metab.89, 1117–1123 (2004). ArticleCASPubMed Google Scholar
Silverman, S. L., Nasser, K., Nattrass, S. & Drinkwater, B. Impact of bone turnover markers and/or educational information on persistence to oral bisphosphonate therapy: a community setting-based trial. Osteoporos. Int.23, 1069–1074 (2012). ArticleCASPubMed Google Scholar
Braga de Castro, M. A., Hannon, R. & Eastell, R. Monitoring alendronate therapy for osteoporosis. J. Bone Miner. Res.14, 602–608 (1999). Article Google Scholar
Orwoll, E. et al. Alendronate for the treatment of osteoporosis in men. N. Engl. J. Med.343, 604–610 (2000). ArticleCASPubMed Google Scholar
Orwoll, E. S. et al. Efficacy and safety of monthly ibandronate in men with low bone density. Bone46, 970–976 (2010). ArticleCASPubMed Google Scholar
Orwoll, E. S. et al. Efficacy and safety of a once-yearly i.v. Infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter, double-blind, active-controlled study. J. Bone Miner. Res.25, 2239–2250 (2010). ArticleCASPubMed Google Scholar
Boonen, S. et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J. Bone Miner. Res.24, 719–725 (2009). ArticleCASPubMed Google Scholar
Bolland, M. J. et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J. Clin. Endocrinol. Metab92, 1283–1288 (2007). ArticleCASPubMed Google Scholar
Black, D. M. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med.356, 1809–1822 (2007). ArticleCASPubMed Google Scholar
Delmas, P. D. et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J. Bone Miner. Res.24, 1544–1551 (2009). ArticleCASPubMed Google Scholar
Eastell, R. et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J. Bone Miner. Res.26, 530–537 (2011). ArticleCASPubMed Google Scholar
Miller, P. D. et al. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J. Clin. Endocrinol. Metab96, 394–402 (2011). ArticleCASPubMed Google Scholar
Grey, A. et al. Prolonged antiresorptive activity of zoledronate: a randomized, controlled trial. J. Bone Miner. Res.25, 2251–2255 (2010). ArticleCASPubMed Google Scholar
Grey, A. et al. Five years of anti-resorptive activity after a single dose of zoledronate—results from a randomized double-blind placebo-controlled trial. Bonehttp://dx.doi.org/10.1016/j.bone.2012.03.016 (2012).
Glover, S. J. et al. Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone45, 1053–1058 (2009). ArticleCASPubMed Google Scholar
McClung, M. R. et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch. Intern. Med.165, 1762–1768 (2005). ArticleCASPubMed Google Scholar
Tsujimoto, M., Chen, P., Miyauchi, A., Sowa, H. & Krege, J. H. PINP as an aid for monitoring patients treated with teriparatide. Bone48, 798–803 (2011). ArticleCASPubMed Google Scholar
Eastell, R. et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J. Bone Miner. Res.18, 1051–1056 (2003). ArticleCASPubMed Google Scholar
Ensrud, K. E. et al. Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J. Bone Miner. Res.19, 1259–1269 (2004). ArticleCASPubMed Google Scholar
Naylor, K. E. et al. The effect of cessation of raloxifene treatment on bone turnover in postmenopausal women. Bone46, 592–597 (2010). ArticleCASPubMed Google Scholar
Eastell, R., Hannon, R. A., Wenderoth, D., Rodriguez-Moreno, J. & Sawicki, A. Effect of stopping risedronate after long-term treatment on bone turnover. J. Clin. Endocrinol. Metab96, 3367–3373 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miller, P. D. et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone43, 222–229 (2008). ArticleCASPubMed Google Scholar
Gallagher, J. C., Rapuri, P. B., Haynatzki, G. & Detter, J. R. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J. Clin. Endocrinol. Metab.87, 4914–4923 (2002). ArticleCASPubMed Google Scholar
Greenspan, S. L. et al. Significant differential effects of alendronate, estrogen, or combination therapy on the rate of bone loss after discontinuation of treatment of postmenopausal osteoporosis. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med.137, 875–883 (2002). ArticleCASPubMed Google Scholar
Wasnich, R. D. et al. Changes in bone density and turnover after alendronate or estrogen withdrawal. Menopause11, 622–630 (2004). ArticlePubMed Google Scholar
Sornay-Rendu, E., Garnero, P., Munoz, F., Duboeuf, F. & Delmas, P. D. Effect of withdrawal of hormone replacement therapy on bone mass and bone turnover: the OFELY study. Bone33, 159–166 (2003). ArticleCASPubMed Google Scholar
Rogers, A., Saleh, G., Hannon, R. A., Greenfield, D. & Eastell, R. Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J. Clin. Endocrinol. Metab87, 4470–4475 (2002). ArticleCASPubMed Google Scholar
Naylor, K. E. et al. Serum osteoprotegerin as a determinant of bone metabolism in a longitudinal study of human pregnancy and lactation. J. Clin. Endocrinol. Metab88, 5361–5365 (2003). ArticleCASPubMed Google Scholar
Jabbar, S. et al. Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J. Clin. Pathol.64, 354–357 (2011). ArticleCASPubMed Google Scholar
Ardawi, M. S., Al-Kadi, H. A., Rouzi, A. A. & Qari, M. H. Determinants of serum sclerostin in healthy pre- and postmenopausal women. J. Bone Miner. Res.26, 2812–2822 (2011). ArticleCASPubMed Google Scholar
Mirza, F. S., Padhi, I. D., Raisz, L. G. & Lorenzo, J. A. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol. Metab95, 1991–1997 (2010). ArticlePubMedPubMed Central Google Scholar
Modder, U. I. et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res.26, 373–379 (2011). ArticleCASPubMed Google Scholar
Sridharan, M. et al. Circulating fibroblast growth factor-23 increases following intermittent parathyroid hormone (1–34) in postmenopausal osteoporosis: association with biomarker of bone formation. Calcif. Tissue Int.87, 398–405 (2010). ArticleCASPubMed Google Scholar
Butler, J. S. et al. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J. Orthop. Res.29, 414–418 (2011). ArticlePubMed Google Scholar
Rosen, C. J. et al. Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J. Bone Miner. Res.20, 141–151 (2005). ArticleCASPubMed Google Scholar
Miller, P. D. et al. Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J. Bone Miner. Res.20, 1315–1322 (2005). ArticleCASPubMed Google Scholar
Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J Med.361, 756–765 (2009). ArticleCASPubMed Google Scholar
Black, D. M. et al. One year of alendronate after one year of parathyroid hormone (1–84) for osteoporosis. N. Engl. J Med.353, 555–565 (2005). ArticleCASPubMed Google Scholar
Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA282, 637–645 (1999). ArticleCASPubMed Google Scholar
Chesnut, C. H., III. et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med.109, 267–276 (2000). ArticleCASPubMed Google Scholar
Meunier, P. J. et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J Med.350, 459–468 (2004). ArticleCASPubMed Google Scholar
Kraenzlin, M. E. et al. The effect of intranasal salmon calcitonin on postmenopausal bone turnover as assessed by biochemical markers: evidence of maximal effect after 8 weeks of continuous treatment. Calcif. Tissue Int.58, 216–220 (1996). ArticleCASPubMed Google Scholar