Frank, I. N., Graham Jr, S. & Nabors, W. L. Urologic and Male Genital Cancers. In American Cancer Society Textbook of Clinical Oncology (Eds Holleb, A. I., Fink, D. J. & Murphy, G. P.) 280–283 (New York, American Cancer Society, 1991). Google Scholar
Kessler, B. & Albertsen, P. The natural history of prostate cancer. Urol. Clin. North Am.30, 219–226 (2003). ArticlePubMed Google Scholar
Small, E. J. Prostate cancer: incidence, management and outcomes. Drugs Aging13, 71–81 (1998). ArticleCASPubMed Google Scholar
Ploch, N. R. & Brawer, M. K. How to use prostate-specific antigen. Urology43 (2 Suppl.), 27–35 (1994). ArticleCASPubMed Google Scholar
Lukes, M. et al. Prostate-specific antigen: current status. Folio Biol. (Praha)47, 41–49 (2001). CAS Google Scholar
Boccon-Gibod, L. Prostate-specific antigen or PSA. Facts and probabilities [French]. Presse Med.24, 1471–1472 (1995). CASPubMed Google Scholar
Safa, A. A. et al. Undetectable serum prostate-specific antigen associated with metastatic prostate cancer: a case report and review of the literature. Am. J. Clin. Oncol.21, 323–326 (1998). ArticleCASPubMed Google Scholar
Sella, A. et al. Low PSA metastatic androgen-independent prostate cancer. Eur. Urol.38, 250–254 (2000). ArticleCASPubMed Google Scholar
Beardo, P. et al. Undetectable prostate specific antigen in disseminated prostate cancer. J. Urol.166, 993 (2001). ArticleCASPubMed Google Scholar
Lofters, A. et al. “PSA-itis”: knowledge of serum prostate specific antigen and other causes of anxiety in men with metastatic prostate cancer. J. Urol.168, 2516–2520 (2002). ArticlePubMed Google Scholar
Dong, J. T. et al. Prostate cancer—biology of metastasis and its clinical implications. World J. Urol.14, 182–189 (1996). ArticleCASPubMed Google Scholar
Yu, K. K. & Hricak, H. Imaging prostate cancer. Radiol. Clin. North Am.38, 59–85 (2000). ArticlePubMed Google Scholar
Yu, K. K. & Hawkins, R. A. The prostate: diagnostic evaluation of metastatic disease. Radiol. Clin. North Am.38, 139–157 (2000). ArticleCASPubMed Google Scholar
Dotan, Z. A. Bone imaging in prostate cancer. Nat. Clin. Pract. Urol.5, 434–444 (2008). ArticlePubMed Google Scholar
Fair, W. R., Israeli, R. S. & Heston, W. D. Prostate-specific membrane antigen. Prostate32, 140–148 (1997). ArticleCASPubMed Google Scholar
Haseman, M. K., Rosenthal, S. A. & Polascik, T. J. Capromab pendetide imaging of prostate cancer. Cancer Biother. Radiopharm.15, 131–140 (2000). ArticleCASPubMed Google Scholar
Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med.348, 2491–2499 (2003). ArticlePubMed Google Scholar
Phelps, M. E. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med.41, 661–681 (2000). CASPubMed Google Scholar
Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer2, 683–693 (2002). ArticleCASPubMed Google Scholar
Basu, S. & Alavi, A. Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. J. Nucl. Med.49, 17N–21N, 37N (2008). ArticlePubMed Google Scholar
Hillner, B. E. et al. Impact of positron emission tomography/computed tomography and positron mission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol.26, 4229 (2008). Article Google Scholar
Hillner, B. E. et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the National Oncologic PET Registry. J. Nucl. Med.49, 1928–1935 (2008). ArticlePubMed Google Scholar
Gambhir, S. S. Molecular imaging of cancer: from molecules to humans. Introduction. J. Nucl. Med.49 (Suppl. 2), 1S–4S (2008). ArticlePubMed Google Scholar
Haberkorn, U. et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl. Med. Biol.21, 827–834 (1994). ArticleCASPubMed Google Scholar
Clavo, A. C., Brown, R. S. & Wahl, R. L. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J. Nucl. Med.36, 1625–1632 (1995). CASPubMed Google Scholar
Pauwels, E. K. et al. FDG accumulation and tumor biology. Nucl. Med. Biol.25, 317–322 (1998). ArticleCASPubMed Google Scholar
Mochizuki, T. et al. FDG uptake and glucose transporter subtype expression in experimental tumor and inflammation models. J. Nucl. Med.42, 1551–1555 (2001). CASPubMed Google Scholar
Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med.49 (6 Suppl.), 24S–42S (2008). ArticleCASPubMed Google Scholar
Plathow, C. & Weber, W. A. Tumor cell metabolism imaging. J. Nucl. Med.49 (6 Suppl.), 43S–63S (2008). ArticleCASPubMed Google Scholar
Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer8, 56–61 (2008). ArticleCASPubMed Google Scholar
Macheda, M. L., Rogers, S. & Bets, J. D. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J. Cell Physiol.202, 654–662 (2005). ArticleCASPubMed Google Scholar
Mathupala, S. P., Ko, Y. H. & Pederson, P. L. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene25, 4777–4786 (2006). ArticleCASPubMedPubMed Central Google Scholar
Smith, T. A. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci.57, 170–178 (2000). CASPubMed Google Scholar
Caraco, C. et al. Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatates enzyme system. J. Biol. Chem.275, 18489–18494 (2000). ArticleCASPubMed Google Scholar
Effert, P. et al. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res.24, 3057–3063 (2004). CASPubMed Google Scholar
Chandler, J. D. et al. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer97, 2035–2042 (2003). ArticleCASPubMed Google Scholar
Stewardt, G. D. et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter 1 expression correlate with Gleason score. Oncol. Rep.20, 1561–1567 (2008). Google Scholar
Hara, T., Bansal, A. & DeGrado, T. R. Effect of hypoxia on the uptake of [methyl-3H]choline, [1–14C]acetate and [18F]FDG in cultured prostate cancer cells. Nucl. Med. Biol.33, 977–984 (2006). ArticleCASPubMed Google Scholar
Palayoor, S. T., Tofilon, P. J. & Coleman, C. N. Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1α and HIF-2α in prostate cancer cells. Clin. Cancer Res.9, 3150–3157 (2003). CASPubMed Google Scholar
Jadvar, H. et al. Glucose metabolism of human prostate cancer mouse xenografts. Mol. Imaging4, 91–97 (2005). ArticlePubMed Google Scholar
Oyama, N. et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl. Med. Biol.29, 783–790 (2002). ArticleCASPubMed Google Scholar
Agus, D. B. et al. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res.58, 3009–3014 (1998). CASPubMed Google Scholar
Apolo, A. B., Pandit-Taskar, N. & Morris, M. J. Novel tracers and their development for the imaging of metastatic prostate cancer. J. Nucl. Med.49, 2031–2041 (2008). ArticlePubMed Google Scholar
Takahashi, N. et al. The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology72, 226–233 (2007). ArticlePubMed Google Scholar
Salminen, E. et al. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol.41, 425–429 (2002). ArticlePubMed Google Scholar
Pugachev, A. et al. Dependence of FDG uptake on tumor microenvironment. Int. J. Radiat. Oncol. Biol. Phys.62, 545–553 (2005). ArticleCASPubMed Google Scholar
Etchebehere, E. C. et al. Qualitative and quantitative comparison between images obtained with filtered back projection and iterative reconstruction in prostate cancer lesions of 18F-FDG PET. Q. J. Nucl. Med.46, 122–130 (2002). CASPubMed Google Scholar
Turlakow, A. et al. local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose: comparison of filtered back projection and iterative reconstruction with segmented attenuation correction. Q. J. Nucl. Med.45, 235–244 (2001). CASPubMed Google Scholar
Vandenberghe, S. et al. Iterative reconstruction algorithms in nuclear medicine. Comput. Med. Imaging Graph.25, 105–111 (2001). ArticleCASPubMed Google Scholar
Effert, P. J. et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J. Urol.155, 994–998 (1996). ArticleCASPubMed Google Scholar
Hofer, C. et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur. Urol.36, 31–35 (1999). ArticleCASPubMed Google Scholar
Patel, P. et al. Evaluation of metabolic activity of prostate gland with PET–CT. J. Nucl. Med.43 (5 Suppl.), 119P (2002). Google Scholar
von Mallek, D. et al. Technical limits of PET/CT with 18FDG in prostate cancer [German]. Aktuelle Urol.37, 218–221 (2006). ArticleCASPubMed Google Scholar
Liu, I. J. et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology57, 108–111 (2001). ArticleCASPubMed Google Scholar
Kao, P. F., Chou, Y. H. & Lai, C. W. Diffuse FDG uptake in acute prostatitis. Clin. Nucl. Med.33, 308–310 (2008). ArticlePubMed Google Scholar
Oyama, N. et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J. Clin. Oncol.29, 623–629 (1999). ArticleCASPubMed Google Scholar
Kanamaru, H. et al. Evaluation of prostate cancer using FDG-PET [Japanese]. Hinyokika Kiyo46, 851–853 (2000). CASPubMed Google Scholar
Lucignani, G., Paganelli, G. & Bombardieri, E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl. Med. Commun.25, 651–656 (2004). ArticleCASPubMed Google Scholar
Shreve, P. D. et al. Metastatic prostate cancer: initial findings of PET with FDG. Radiology199, 751–756 (1996). ArticleCASPubMed Google Scholar
Morris, N. J. et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology59, 913–918 (2002). ArticlePubMed Google Scholar
Yeh, S. D. et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl. Med. Biol.23, 693–697 (1996). ArticleCASPubMed Google Scholar
Jadvar, H., Pinski, J. & Conti, P. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol. Rep.10, 1485–1488 (2003). PubMed Google Scholar
Jadvar, H. et al. Concordance among FDG PET, CT and bone scan in men with metastatic prostate cancer. Presented at the 55th Annual Meeting of the Society of Nuclear Medicine, 2008 June 15–19, New Orleans, LA.
Chang, C. H. et al. Detecting metastatic pelvic lymph nodes by (18)F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol. Int.70, 311–315 (2003). ArticlePubMed Google Scholar
Schoder, H. et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin. Cancer Res.11, 4761–4769 (2005). ArticlePubMed Google Scholar
Sanz, G. et al. Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int.84, 1028–1031 (1999). ArticleCASPubMed Google Scholar
Sung, J. et al. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int.92, 24–27 (2003). ArticleCASPubMed Google Scholar
Seltzer, M. A. et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J. Urol.162, 1322–1328 (1999). ArticleCASPubMed Google Scholar
Oyama, N. et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl. Med. Commun.22, 963–969 (2001). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol. Imaging Biol.8, 300–308 (2006). ArticleCASPubMed Google Scholar
Haberkorn, U. et al. PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J. Nucl. Med.38, 1215–1221 (1997). CASPubMed Google Scholar
Morris, M. J. et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin. Cancer Res.11, 3210–3216 (2005). ArticleCASPubMedPubMed Central Google Scholar
Oyama, N. et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol. Imaging Biol.4, 99–104 (2002). ArticlePubMed Google Scholar
Farsad, M. et al. Positron-emission tomography in imaging and staging prostate cancer. Cancer Biomark.4, 277–284 (2008). ArticleCASPubMed Google Scholar
Dimitrakopoulou-Strauss, A. & Strauss, L. G. PET imaging of prostate cancer with 11C-acetate. J. Nucl. Med.44, 556–558 (2003). PubMed Google Scholar
Reske, S. N. et al. Imaging prostate cancer with 11C-choline PET/CT. J. Nucl. Med.47, 1249–1254 (2006). CASPubMed Google Scholar
Nunez, R. et al. Combined 18F-FDG and C-11 methionine PET scans in patients with newly progressive metastatic prostate cancer. J. Nucl. Med.43, 46–55 (2002). PubMed Google Scholar
Larson, S. M. et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med.45, 366–373 (2004). CASPubMed Google Scholar
Schuster, D. M. et al. Initial experience with radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med.48, 56–63 (2007). CASPubMed Google Scholar
Mease, R. C. et al. N-[N-[(S)-1, 3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-l-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin. Cancer Res.14, 3036–3043 (2008). ArticleCASPubMedPubMed Central Google Scholar
Even-Sapir, E. et al. The detection of bone metastases in patients with high risk prostate cancer:99mTc-MDP planar bone scintigraphy, single- and multi-filed-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med.47, 287–297 (2006). PubMed Google Scholar