Host–pathogen interactions in urinary tract infection (original) (raw)
Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis. Mon.49, 53–70 (2003). ArticlePubMed Google Scholar
Guay, D. R. Contemporary management of uncomplicated urinary tract infections. Drugs68, 1169–1205 (2008). ArticleCASPubMed Google Scholar
O'Hanley, P. in Urinary Tract Infections: Molecular Pathogenesis and Clinical Management (eds Mobley, H. L. T. & Warren, J. W.) 405–425 (ASM Press, Washington, DC, 1996). Google Scholar
Zorc, J. J., Kiddoo, D. A. & Shaw, K. N. Diagnosis and management of pediatric urinary tract infections. Clin. Microbiol. Rev.18, 417–422 (2005). ArticlePubMedPubMed Central Google Scholar
Litwin, M. S. & Saigal, C. S. (Eds) Urologic Diseases in America (Government Printing Office, Washington, D. C., 2007). Google Scholar
DeFrances, C. J., Lucas, C. A., Buie, V. C. & Golosinskiy, A. 2006 National Hospital Discharge Survey. National health statistics reports; no 5. (Hyattsville, MD, 2008). Google Scholar
Hooton, T. M. et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis.50, 625–663 (2010). ArticlePubMed Google Scholar
Nicolle, L. E. Catheter-related urinary tract infection. Drugs Aging22, 627–639 (2005). ArticlePubMed Google Scholar
Mobley, H. L., Donnenberg, M. S. & Hagan, E. C. EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Böck, A. et al.) (ASM Press, Washington, DC, 2009). Google Scholar
Sosa, V., Schlapp, G. & Zunino, P. Proteus mirabilis isolates of different origins do not show correlation with virulence attributes and can colonize the urinary tract of mice. Microbiology152, 2149–2157 (2006). ArticleCASPubMed Google Scholar
Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA99, 17020–17024 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brzuszkiewicz, E. et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl Acad. Sci. USA103, 12879–12884 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, S. L. et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl Acad. Sci. USA103, 5977–5982 (2006). ArticleCASPubMedPubMed Central Google Scholar
Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet.5, e1000344 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pearson, M. M. et al. The complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J. Bacteriol.190, 4027–4037 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sabate, M., Moreno, E., Perez, T., Andreu, A. & Prats, G. Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin. Microbiol. Infect.12, 880–886 (2006). ArticleCASPubMed Google Scholar
Oelschlaeger, T. A., Dobrindt, U. & Hacker, J. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int. J. Antimicrob. Agents19, 517–521 (2002). ArticleCASPubMed Google Scholar
Ye, C. & Xu, J. Prevalence of iron transport gene on pathogenicity-associated island of uropathogenic Escherichia coli in E. coli O157:H7 containing Shiga toxin gene. J. Clin. Microbiol.39, 2300–2305 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lloyd, A. L., Rasko, D. A. & Mobley, H. L. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol.189, 3532–3546 (2007). ArticleCASPubMedPubMed Central Google Scholar
Flannery, E. L., Mody, L. & Mobley, H. L. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect. Immun.77, 4887–4894 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature405, 299–304 (2000). ArticleCASPubMed Google Scholar
Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA93, 9827–9832 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wu, X. R., Sun, T. T. & Medina, J. J. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl Acad. Sci. USA93, 9630–9635 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lane, M. C. & Mobley, H. L. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int.72, 19–25 (2007). ArticleCASPubMed Google Scholar
Westerlund, B. et al. The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol. Microbiol.3, 329–337 (1989). ArticleCASPubMed Google Scholar
Goluszko, P. et al. Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J. Clin. Invest.99, 1662–1672 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pere, A., Nowicki, B., Saxen, H., Siitonen, A. & Korhonen, T. K. Expression of P, type-1, and type-1C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J. Infect. Dis.156, 567–574 (1987). ArticleCASPubMed Google Scholar
Buckles, E. L. et al. Identification and characterization of a novel uropathogenic _Escherichia coli_-associated fimbrial gene cluster. Infect. Immun.72, 3890–3901 (2004). ArticleCASPubMedPubMed Central Google Scholar
Valle, J. et al. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J. Bacteriol.190, 4147–4161 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boehm, D. F., Welch, R. A. & Snyder, I. S. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect. Immun.58, 1951–1958 (1990). CASPubMedPubMed Central Google Scholar
Island, M. D. et al. Cytotoxicity of hemolytic, cytotoxic necrotizing factor 1-positive and -negative Escherichia coli to human T24 bladder cells. Infect. Immun.66, 3384–3389 (1998). CASPubMedPubMed Central Google Scholar
Mobley, H. L. et al. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect. Immun.58, 1281–1289 (1990). CASPubMedPubMed Central Google Scholar
Trifillis, A. L. et al. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int.46, 1083–1091 (1994). ArticleCASPubMed Google Scholar
Uhlen, P. et al. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature405, 694–697 (2000). ArticleCASPubMed Google Scholar
Smith, Y. C., Rasmussen, S. B., Grande, K. K., Conran, R. M. & O'Brien, A. D. Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun.76, 2978–2990 (2008). ArticleCASPubMedPubMed Central Google Scholar
O'Hanley, P., Lalonde, G. & Ji, G. Alpha-hemolysin contributes to the pathogenicity of piliated digalactoside-binding Escherichia coli in the kidney: efficacy of an alpha-hemolysin vaccine in preventing renal injury in the BALB/c mouse model of pyelonephritis. Infect. Immun.59, 1153–1161 (1991). CASPubMedPubMed Central Google Scholar
Boquet, P. The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon39, 1673–1680 (2001). ArticleCASPubMed Google Scholar
Lemonnier, M., Landraud, L. & Lemichez, E. Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol. Rev.31, 515–534 (2007). ArticleCASPubMed Google Scholar
Falzano, L. et al. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol. Microbiol.9, 1247–1254 (1993). ArticleCASPubMed Google Scholar
Hofman, P. et al. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J. Leukoc. Biol.68, 522–528 (2000). CASPubMed Google Scholar
Mills, M., Meysick, K. C. & O'Brien, A. D. Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect. Immun.68, 5869–5880 (2000). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. E. et al. The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol. Med. Microbiol.28, 37–41 (2000). ArticleCASPubMed Google Scholar
Rippere-Lampe, K. E., O'Brien, A. D., Conran, R. & Lockman, H. A. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (_cnf_1) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun.69, 3954–3964 (2001). ArticleCASPubMedPubMed Central Google Scholar
Parham, N. J. et al. PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol. Lett.230, 73–83 (2004). ArticleCASPubMed Google Scholar
Guyer, D. M., Radulovic, S., Jones, F. E. & Mobley, H. L. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect. Immun.70, 4539–4546 (2002). ArticleCASPubMedPubMed Central Google Scholar
Heimer, S. R., Rasko, D. A., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect. Immun.72, 593–597 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lane, M. C. et al. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect. Immun.73, 7644–7656 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wright, K. J., Seed, P. C. & Hultgren, S. J. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect. Immun.73, 7657–7668 (2005). ArticleCASPubMedPubMed Central Google Scholar
Snyder, J. A. et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun.72, 6373–6381 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl Acad. Sci. USA104, 16669–16674 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hagan, E. C. & Mobley, H. L. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol.71, 79–91 (2009). ArticleCASPubMed Google Scholar
Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun.69, 6179–6185 (2001). ArticleCASPubMedPubMed Central Google Scholar
Johnson, J. R. et al. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect. Immun.73, 965–971 (2005). ArticleCASPubMedPubMed Central Google Scholar
Russo, T. A., Carlino, U. B. & Johnson, J. R. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun.69, 6209–6216 (2001). ArticleCASPubMedPubMed Central Google Scholar
Russo, T. A. et al. Iron functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun.70, 7156–7160 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sabri, M., Houle, S. & Dozois, C. M. Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect. Immun.77, 1155–1164 (2009). ArticleCASPubMed Google Scholar
Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell10, 1033–1043 (2002). ArticleCASPubMed Google Scholar
Fischbach, M. A. et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl Acad. Sci. USA103, 16502–16507 (2006). ArticleCASPubMedPubMed Central Google Scholar
Smith, K. D. Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. Int. J. Biochem. Cell. Biol.39, 1776–1780 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med.14, 399–406 (2008). ArticleCASPubMed Google Scholar
Billips, B. K., Schaeffer, A. J. & Klumpp, D. J. Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder. Infect. Immun.76, 3891–3900 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hunstad, D. A., Justice, S. S., Hung, C. S., Lauer, S. R. & Hultgren, S. J. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect. Immun.73, 3999–4006 (2005). ArticleCASPubMedPubMed Central Google Scholar
Johnson, J. R., Clabots, C. & Rosen, H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect. Immun.74, 461–468 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bower, J. M. & Mulvey, M. A. Polyamine-mediated resistance of uropathogenic Escherichia coli to nitrosative stress. J. Bacteriol.188, 928–933 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kulesus, R. R., Diaz-Perez, K., Slechta, E. S., Eto, D. S. & Mulvey, M. A. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect. Immun.76, 3019–3026 (2008). ArticleCASPubMedPubMed Central Google Scholar
Svensson, L., Marklund, B. I., Poljakovic, M. & Persson, K. Uropathogenic Escherichia coli and tolerance to nitric oxide: the role of flavohemoglobin. J. Urol.175, 749–753 (2006). ArticleCASPubMed Google Scholar
Lloyd, A. L., Smith, S. N., Eaton, K. A. & Mobley, H. L. Uropathogenic Escherichia coli suppresses the host inflammatory response via pathogenicity island genes sisA and sisB. Infect. Immun.77, 5322–5333 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, K., Feito, M. J., Sacks, S. H. & Sheerin, N. S. CD46 (membrane cofactor protein) acts as a human epithelial cell receptor for internalization of opsonized uropathogenic Escherichia coli. J. Immunol.177, 2543–2551 (2006). ArticleCASPubMed Google Scholar
Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA103, 14170–14175 (2006). ArticleCASPubMedPubMed Central Google Scholar
Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science301, 105–107 (2003). ArticleCASPubMed Google Scholar
Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med.4, e329 (2007). ArticlePubMedPubMed Central Google Scholar
Anderson, G. G., Martin, S. M. & Hultgren, S. J. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect.6, 1094–1101 (2004). ArticlePubMed Google Scholar
Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA101, 1333–1338 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rocha, S. P., Pelayo, J. S. & Elias, W. P. Fimbriae of uropathogenic Proteus mirabilis. FEMS Immunol. Med. Microbiol.51, 1–7 (2007). ArticleCASPubMed Google Scholar
Bahrani, F. K., Johnson, D. E., Robbins, D. & Mobley, H. L. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect. Immun.59, 3574–3580 (1991). CASPubMedPubMed Central Google Scholar
Jansen, A. M., Lockatell, V., Johnson, D. E. & Mobley, H. L. Mannose-resistant _Proteus_-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect. Immun.72, 7294–7305 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, X., Johnson, D. E. & Mobley, H. L. Requirement of MrpH for mannose-resistant _Proteus_-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect. Immun.67, 2822–2833 (1999). CASPubMedPubMed Central Google Scholar
Bahrani, F. K. et al. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect. Immun.62, 3363–3371 (1994). CASPubMedPubMed Central Google Scholar
Li, X., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol. Microbiol.45, 865–874 (2002). ArticleCASPubMed Google Scholar
Altman, E. et al. Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem. Cell. Biol.79, 783–788 (2001). ArticleCASPubMed Google Scholar
Lee, K. K., Harrison, B. A., Latta, R. & Altman, E. The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can. J. Microbiol.46, 961–966 (2000). ArticleCASPubMed Google Scholar
Wray, S. K., Hull, S. I., Cook, R. G., Barrish, J. & Hull, R. A. Identification and characterization of a uroepithelial cell adhesin from a uropathogenic isolate of Proteus mirabilis. Infect. Immun.54, 43–49 (1986). CASPubMedPubMed Central Google Scholar
Massad, G., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect. Immun.62, 536–542 (1994). CASPubMedPubMed Central Google Scholar
Zunino, P. et al. Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology149, 3231–3237 (2003). ArticleCASPubMed Google Scholar
Massad, G., Bahrani, F. K. & Mobley, H. L. Proteus mirabilis fimbriae: identification, isolation, and characterization of a new ambient-temperature fimbria. Infect. Immun.62, 1989–1994 (1994). CASPubMedPubMed Central Google Scholar
Zunino, P., Geymonat, L., Allen, A. G., Legnani-Fajardo, C. & Maskell, D. J. Virulence of a Proteus mirabilis ATF isogenic mutant is not impaired in a mouse model of ascending urinary tract infection. FEMS Immunol. Med. Microbiol.29, 137–143 (2000). ArticleCASPubMed Google Scholar
Bijlsma, I. G., van Dijk, L., Kusters, J. G. & Gaastra, W. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology141, 1349–1357 (1995). ArticleCASPubMed Google Scholar
Uphoff, T. S. & Welch, R. A. Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J. Bacteriol.172, 1206–1216 (1990). ArticleCASPubMedPubMed Central Google Scholar
Welch, R. A. Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect. Immun.55, 2183–2190 (1987). CASPubMedPubMed Central Google Scholar
Alamuri, P. & Mobley, H. L. A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol. Microbiol.68, 997–1017 (2008). ArticleCASPubMed Google Scholar
Alamuri, P., Eaton, K. A., Himpsl, S. D., Smith, S. N. & Mobley, H. L. Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect. Immun.77, 632–641 (2009). ArticleCASPubMed Google Scholar
Rather, P. N. Swarmer cell differentiation in Proteus mirabilis. Environ. Microbiol.7, 1065–1073 (2005). ArticleCASPubMed Google Scholar
Jansen, A. M., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect. Immun.71, 3607–3613 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jones, B. V., Young, R., Mahenthiralingam, E. & Stickler, D. J. Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect. Immun.72, 3941–3950 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mobley, H. L. et al. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun.64, 5332–5340 (1996). CASPubMedPubMed Central Google Scholar
Zunino, P., Piccini, C. & Legnani-Fajardo, C. Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb. Pathog.16, 379–385 (1994). ArticleCASPubMed Google Scholar
Evanylo, L. P., Kadis, S. & Maudsley, J. R. Siderophore production by Proteus mirabilis. Can. J. Microbiol.30, 1046–1051 (1984). ArticleCASPubMed Google Scholar
Lima, A., Zunino, P., D'Alessandro, B. & Piccini, C. An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J. Med. Microbiol.56, 1600–1607 (2007). ArticleCASPubMed Google Scholar
Drechsel, H., Thieken, A., Reissbrodt, R., Jung, G. & Winkelmann, G. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J. Bacteriol.175, 2727–2733 (1993). ArticleCASPubMedPubMed Central Google Scholar
Massad, G., Zhao, H. & Mobley, H. L. Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J. Bacteriol.177, 5878–5883 (1995). ArticleCASPubMedPubMed Central Google Scholar
Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect. Immun.78, 2823–2833 (2010). ArticleCASPubMedPubMed Central Google Scholar
Belas, R., Manos, J. & Suvanasuthi, R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect. Immun.72, 5159–5167 (2004). ArticleCASPubMedPubMed Central Google Scholar
Senior, B. W., Loomes, L. M. & Kerr, M. A. The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J. Med. Microbiol.35, 203–207 (1991). ArticleCASPubMed Google Scholar
Walker, K. E., Moghaddame-Jafari, S., Lockatell, C. V., Johnson, D. & Belas, R. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol. Microbiol.32, 825–836 (1999). ArticleCASPubMed Google Scholar
Belas, R. & Flaherty, D. Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. Gene148, 33–41 (1994). ArticleCASPubMed Google Scholar
Murphy, C. A. & Belas, R. Genomic rearrangements in the flagellin genes of Proteus mirabilis. Mol. Microbiol.31, 679–690 (1999). ArticleCASPubMed Google Scholar
Zhao, H., Li, X., Johnson, D. E., Blomfield, I. & Mobley, H. L. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol. Microbiol.23, 1009–1019 (1997). ArticleCASPubMed Google Scholar
Li, X. et al. Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect. Immun.70, 389–394 (2002). ArticleCASPubMedPubMed Central Google Scholar
Thomas, W. E., Nilsson, L. M., Forero, M., Sokurenko, E. V. & Vogel, V. Shear-dependent 'stick-and-roll' adhesion of type 1 fimbriated Escherichia coli. Mol. Microbiol.53, 1545–1557 (2004). ArticleCASPubMed Google Scholar
Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int.75, 1153–1165 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhou, G. et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell. Sci.114, 4095–4103 (2001). CASPubMed Google Scholar
Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science282, 1494–1497 (1998). ArticleCASPubMed Google Scholar
Fukushi, Y., Orikasa, S. & Kagayama, M. An electron microscopic study of the interaction between vesical epitherlium and E. coli. Invest. Urol.17, 61–68 (1979). CASPubMed Google Scholar
Klumpp, D. J. et al. Uropathogenic Escherichia coli potentiates type 1 pilus-induced apoptosis by suppressing NF-κB. Infect. Immun.69, 6689–6695 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sivick, K. E. & Mobley, H. L. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect. Immun.78, 568–585 (2010). ArticleCASPubMed Google Scholar
Wullt, B. et al. The host response to urinary tract infection. Infect. Dis. Clin. North Am.17, 279–301 (2003). ArticlePubMed Google Scholar
Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med.12, 636–641 (2006). ArticleCASPubMed Google Scholar
Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect. Immun.70, 3053–3060 (2002). ArticleCASPubMedPubMed Central Google Scholar
Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis.42, 658–676 (2003). ArticleCASPubMed Google Scholar
Raffi, H. S., Bates, J. M., Jr, Laszik, Z. & Kumar, S. Tamm-horsfall protein protects against urinary tract infection by Proteus mirabilis. J. Urol.181, 2332–2338 (2009). ArticlePubMedPubMed Central Google Scholar
Ingersoll, M. A., Kline, K. A., Nielsen, H. V. & Hultgren, S. J. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell. Microbiol.10, 2568–2578 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sivick, K. E., Schaller, M. A., Smith, S. N. & Mobley, H. L. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J. Immunol.184, 2065–2075 (2010). ArticleCASPubMed Google Scholar
Hedges, S. et al. Uroepithelial cells are part of a mucosal cytokine network. Infect. Immun.62, 2315–2321 (1994). CASPubMedPubMed Central Google Scholar
Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J. Immunol.166, 1148–1155 (2001). ArticleCASPubMed Google Scholar
Wullt, B. et al. P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell. Microbiol.3, 255–264 (2001). ArticleCASPubMed Google Scholar
Agace, W. W. The role of the epithelial cell in Escherichia coli induced neutrophil migration into the urinary tract. Eur. Respir. J.9, 1713–1728 (1996). ArticleCASPubMed Google Scholar
Agace, W. W., Hedges, S. R., Ceska, M. & Svanborg, C. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J. Clin. Invest.92, 780–785 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol.162, 3037–3044 (1999). CASPubMed Google Scholar
Haraoka, M. et al. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis.180, 1220–1229 (1999). ArticleCASPubMed Google Scholar
Ragnarsdottir, B. et al. TLR- and CXCR1-dependent innate immunity: insights into the genetics of urinary tract infections. Eur. J. Clin. Invest.38 (Suppl. 2), 12–20 (2008). ArticleCASPubMed Google Scholar
Ashkar, A. A., Mossman, K. L., Coombes, B. K., Gyles, C. L. & Mackenzie, R. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog.4, e1000233 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schilling, J. D., Martin, S. M., Hung, C. S., Lorenz, R. G. & Hultgren, S. J. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA100, 4203–4208 (2003). ArticleCASPubMedPubMed Central Google Scholar
Patole, P. S. et al. Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int.68, 2582–2587 (2005). ArticleCASPubMed Google Scholar
Frendeus, B. et al. Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol. Microbiol.40, 37–51 (2001). ArticleCASPubMed Google Scholar
Hedges, S., Svensson, M. & Svanborg, C. Interleukin-6 response of epithelial cell lines to bacterial stimulation in vitro. Infect. Immun.60, 1295–1301 (1992). CASPubMedPubMed Central Google Scholar
Hedlund, M. et al. P fimbriae-dependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol. Microbiol.33, 693–703 (1999). ArticleCASPubMed Google Scholar
Hedlund, M. et al. Type 1 fimbriae deliver an LPS- and TLR4-dependent activation signal to CD14-negative cells. Mol. Microbiol.39, 542–552 (2001). ArticleCASPubMed Google Scholar
Mossman, K. L. et al. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J. Immunol.181, 6702–6706 (2008). ArticleCASPubMed Google Scholar
Fischer, H., Yamamoto, M., Akira, S., Beutler, B. & Svanborg, C. Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur. J. Immunol.36, 267–277 (2006). ArticleCASPubMed Google Scholar
Andersen-Nissen, E. et al. Cutting edge: Tlr5−/− mice are more susceptible to Escherichia coli urinary tract infection. J. Immunol.178, 4717–4720 (2007). ArticleCASPubMed Google Scholar
Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410, 1099–1103 (2001). ArticleCASPubMed Google Scholar
Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science303, 1522–1526 (2004). ArticleCASPubMed Google Scholar
Thumbikat, P., Waltenbaugh, C., Schaeffer, A. J. & Klumpp, D. J. Antigen-specific responses accelerate bacterial clearance in the bladder. J. Immunol.176, 3080–3086 (2006). ArticleCASPubMed Google Scholar
Pearsall, N. N. & Sherris, J. C. The demonstration of specific urinary anti-bodies in urinary tract infections caused by Gram-negative bacilli. J. Pathol. Bacteriol.91, 589–595 (1966). ArticleCASPubMed Google Scholar
Eden, C. S., Hanson, L. A., Jodal, U., Lindberg, U. & Akerlund, A. S. Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet1, 490–492 (1976). ArticleCASPubMed Google Scholar
Svanborg-Eden, C. & Svennerholm, A. M. Secretory immunoglobulin A and G antibodies prevent adhesion of Escherichia coli to human urinary tract epithelial cells. Infect. Immun.22, 790–797 (1978). CASPubMedPubMed Central Google Scholar
Trinchieri, A. et al. Secretory immunoglobulin A and inhibitory activity of bacterial adherence to epithelial cells in urine from patients with urinary tract infections. Urol. Res.18, 305–308 (1990). ArticleCASPubMed Google Scholar
Svanborg, C. et al. Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol.9, 33–39 (2006). ArticleCASPubMed Google Scholar
Lomberg, H., Jodal, U., Eden, C. S., Leffler, H. & Samuelsson, B. P1 blood group and urinary tract infection. Lancet1, 551–552 (1981). ArticleCASPubMed Google Scholar
Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun.46, 839–844 (1984). CASPubMedPubMed Central Google Scholar
Goluszko, P. et al. Vaccination with purified Dr Fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect. Immun.73, 627–631 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ragnarsdottir, B. et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J. Infect. Dis.196, 475–484 (2007). ArticleCASPubMed Google Scholar
Frendeus, B. et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J. Exp. Med.192, 881–890 (2000). ArticleCASPubMedPubMed Central Google Scholar
Godaly, G., Hang, L., Frendeus, B. & Svanborg, C. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J. Immunol.165, 5287–5294 (2000). ArticleCASPubMed Google Scholar
Hang, L., Frendeus, B., Godaly, G. & Svanborg, C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J. Infect. Dis.182, 1738–1748 (2000). ArticleCASPubMed Google Scholar
Lundstedt, A. C. et al. Inherited susceptibility to acute pyelonephritis: a family study of urinary tract infection. J. Infect. Dis.195, 1227–1234 (2007). ArticlePubMed Google Scholar
Johnson, J. R. in Urinary Tract Infections: Molecular Pathogenesis and Clinical Management (eds Mobley, H. L. T. & Warren, J. W.) 95–118 (ASM Press, Washington, DC, 1996). Google Scholar
Svensson, M. et al. Glycolipid depletion in antimicrobial therapy. Mol. Microbiol.47, 453–461 (2003). ArticleCASPubMed Google Scholar
Bishop, B. L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med.13, 625–630 (2007). ArticleCASPubMed Google Scholar
Bouckaert, J. et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol.55, 441–455 (2005). ArticleCASPubMed Google Scholar
Thankavel, K. et al. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest.100, 1123–1136 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lilly, J. D. & Parsons, C. L. Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg. Gynecol. Obstet.171, 493–496 (1990). CASPubMed Google Scholar
Munasinghe, R. L., Yazdani, H., Siddique, M. & Hafeez, W. Appropriateness of use of indwelling urinary catheters in patients admitted to the medical service. Infect. Control Hosp. Epidemiol.22, 647–649 (2001). ArticleCASPubMed Google Scholar
Stickler, D. J., Jones, G. L. & Russell, A. D. Control of encrustation and blockage of Foley catheters. Lancet361, 1435–1437 (2003). ArticleCASPubMed Google Scholar
Hull, R. et al. Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J. Urol.163, 872–877 (2000). ArticleCASPubMed Google Scholar
Sabbuba, N. A. et al. Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical. J. Urol.171, 1925–1928 (2004). ArticleCASPubMed Google Scholar
Bauer, H. W. et al. A long-term, multicenter, double-blind study of an Escherichia coli extract (OM-89) in female patients with recurrent urinary tract infections. Eur. Urol.47, 542–548 (2005). ArticlePubMed Google Scholar
Hopkins, W. J., Elkahwaji, J., Beierle, L. M., Leverson, G. E. & Uehling, D. T. Vaginal mucosal vaccine for recurrent urinary tract infections in women: results of a phase 2 clinical trial. J. Urol.177, 1349–1353 (2007). ArticlePubMed Google Scholar
Alteri, C. J., Hagan, E. C., Sivick, K. E., Smith, S. N. & Mobley, H. L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog.5, e1000586 (2009). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. E. et al. Serum immunoglobulin response and protection from homologous challenge by Proteus mirabilis in a mouse model of ascending urinary tract infection. Infect. Immun.67, 6683–6687 (1999). CASPubMedPubMed Central Google Scholar
Li, X. & Mobley, H. L. Vaccines for Proteus mirabilis in urinary tract infection. Int. J. Antimicrob. Agents19, 461–465 (2002). ArticleCASPubMed Google Scholar
Moayeri, N., Collins, C. M. & O'Hanley, P. Efficacy of a Proteus mirabilis outer membrane protein vaccine in preventing experimental Proteus pyelonephritis in a BALB/c mouse model. Infect. Immun.59, 3778–3786 (1991). CASPubMedPubMed Central Google Scholar
Scavone, P. et al. Intranasal immunisation with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes Infect.9, 821–828 (2007). ArticleCASPubMed Google Scholar
Pellegrino, R., Galvalisi, U., Scavone, P., Sosa, V. & Zunino, P. Evaluation of Proteus mirabilis structural fimbrial proteins as antigens against urinary tract infections. FEMS Immunol. Med. Microbiol.36, 103–110 (2003). ArticleCASPubMed Google Scholar
Li, X. et al. Use of translational fusion of the MrpH fimbrial adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect. Immun.72, 7306–7310 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nielubowicz, G. R., Smith, S. N. & Mobley, H. L. Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect. Immun.76, 4222–4231 (2008). ArticleCASPubMedPubMed Central Google Scholar
Serruto, D., Serino, L., Masignani, V. & Pizza, M. Genome-based approaches to develop vaccines against bacterial pathogens. Vaccine27, 3245–3250 (2009). ArticleCASPubMed Google Scholar
Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl Acad. Sci. USA82, 5724–5727 (1985). ArticleCASPubMedPubMed Central Google Scholar
Klemm, P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J.5, 1389–1393 (1986). ArticleCASPubMedPubMed Central Google Scholar
Bryan, A. et al. Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect. Immun.74, 1072–1083 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lane, M. C., Li, X., Pearson, M. M., Simms, A. N. & Mobley, H. L. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J. Bacteriol.191, 1382–1392 (2009). ArticleCASPubMed Google Scholar
Li, X., Rasko, D. A., Lockatell, C. V., Johnson, D. E. & Mobley, H. L. Repression of bacterial motility by a novel fimbrial gene product. EMBO J.20, 4854–4862 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pearson, M. M. & Mobley, H. L. Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol. Microbiol.69, 548–558 (2008). ArticleCASPubMedPubMed Central Google Scholar
Simms, A. N. & Mobley, H. L. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect. Immun.76, 4833–4841 (2008). ArticleCASPubMedPubMed Central Google Scholar