Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy (original) (raw)

References

  1. Wüthrich, K. NMR of Proteins. (Wiley, New York, 1986).
    Google Scholar
  2. Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit. Rev. Biochem. Mot. Biol. 24, 479–564 (1989).
    Article CAS Google Scholar
  3. Bork, K., Downing, A.K., Kieffer, B. & Campbell, I.D. Structure and distribution of modules in extracellular proteins. Q. Rev, Biophys. 29, 119–167 (1996).
    Article CAS Google Scholar
  4. Allerhand, A. et al. Conformation and segmental motion of native and denatured ribonuclease A in solution: application of natural abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc. 93, 544–546 (1971).
    Article CAS Google Scholar
  5. Lipari, G. & Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules I: theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559.
    Article CAS Google Scholar
  6. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to Staphytococcal nuclease. Biochemistry 28, 8972–8979 (1989).
    Article CAS Google Scholar
  7. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected 1H-15N NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).
    Article CAS Google Scholar
  8. Torchia, D.A., Nicholson, L.K., Cole, H.B.R. & Kay, L.E. Heteronuclear NMR studies of the molecular dynamics of staphylococcal nuclease. In NMR of Proteins (eds Clore, G.M. & Gronenborn, A.M.) 190–219 (MacMillan Press, London, 1993).
    Google Scholar
  9. Wagner, G., Hyberts, S. & Peng, J.W. Study of protein dynamics by NMR. In NMR of Proteins (eds., Clore, G.M. & Gronenborn, A.M.) 220–257 (MacMillan Press, London; 1993).
    Google Scholar
  10. Phan, I.Q.H., Boyd, J. & Campbell, I.D. Dynamic studies of a fibronectin type I module pair at three frequencies: anisotropic modelling and direct determination of conformational exchange. J. Biomol. NMR 8, 369–378 (1996).
    Article CAS Google Scholar
  11. Abragam, A. The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961).
    Google Scholar
  12. Woessner, D.E. Nuclear spin relaxation in ellipsoids undergoing rotational Brownian motion. J. Chem. Phys. 36, 647–654 (1962).
    Article Google Scholar
  13. Tjandra, N., Feller, S.E., Pastor, R.W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).
    Article CAS Google Scholar
  14. Tjandra, N., Wingfield, P.T., Stahl, S.J. & Bax, A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J. Biomol. NMR 8, 273–284 (1996).
    Article CAS Google Scholar
  15. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and bariey serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).
    Article CAS Google Scholar
  16. Liao, D.-I. et al. The first step in sugar transport: crystal structure of the amino-terminal domain of enzyme I of the E. coli PEP:sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure 4, 861–872 (1996).
    Article CAS Google Scholar
  17. Garrett, D.S. et al. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry 36, 2517–2530 (1997).
    Article CAS Google Scholar
  18. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).
    Article CAS Google Scholar
  19. MacArthur, M.W. & Thornton, J.M. Deviations from planarity of the peptide bond in peptides and proteins. J. Mol. Biol. 264, 1180–1195 (1996).
    Article CAS Google Scholar
  20. Brüschweller, R., Liao, X. & Wright, P.E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889 (1995).
    Article Google Scholar
  21. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).
    Article CAS Google Scholar
  22. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures.J. Mol. Graphics 14, 52–55 (1996).
    Article Google Scholar
  23. Brünger, A.T. XPLOR Manual Version 3.1 (New Haven, Connecticut: Yale University, 1993).
    Google Scholar
  24. Garrett, D.S., Kuszewski, J., Hancock, T.J., Lodi, P.J., Vuister, G.W., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against three-bond HN-CαH coupling constants on protein structure determination by NMR. J. Magn. Reson. Series B 104, 99103 (1994).
    Article Google Scholar
  25. Kuszewski, J., Qin, J., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against 13Cα and 13Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. Series B 106, 92–96 (1995).
    Article CAS Google Scholar
  26. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. The effects of cross-correlation between dipolar and chemical shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins: pulse sequences for the removal of such effects. J. Magn. Reson. 97, 359–375 (1992).
    CAS Google Scholar
  27. Peng, J.W., Thanabal, V. & Wagner, G. Improved accuracy of heteronuclear transverse relaxation time measurements in macromolecules: elimination of antiphase contributions. J. Magn. Reson. 95, 421–427 (1991).
    CAS Google Scholar
  28. Grzesiek, S. & Bax, A. The importance of not saturating H20 in protein NMR: application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594 (1993).
    Article CAS Google Scholar
  29. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. & Karplus, M. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).
    Article CAS Google Scholar
  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
    Article CAS Google Scholar

Download references