The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis (original) (raw)
References
Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature356, 768–774 (1992). ArticleCASPubMed Google Scholar
Cerretti, D.P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science256, 97–100 (1992). ArticleCASPubMed Google Scholar
Munday, N.A. et al. Molecular-cloning and pro-apoptotic activity of ICE(Rel)II and ICE(Rel) III, members of the ICE/CED-3 family of cysteine proteases. J Biol. Chem.270, 15870–15876 (1995). ArticleCASPubMed Google Scholar
Faucheu, C. et al. A novel human protease similar to the interleukin-1β converting- enzyme induces apoptosis in transfected cells. EMBO J.14, 1914–1922 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kamens, J. et al. Identification and characterization of ICH-2 a novel member of the interleukin–1β–converting enzyme family of cysteine proteases. J. Biol. Chem.270, 15250–15256 (1995). ArticleCASPubMed Google Scholar
Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. & Jenkins, N.A. Induction of apoptosis by the mouse nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell-death gene CED-3 and the mammalian IL1-β-converting enzyme. Genes & Development8, 1613–1626 (1994). ArticleCAS Google Scholar
Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J.Y. ICH-1, an ICE/CED-3-related gene, encodes both positive and negative regulators of programmed cell-death. Cell78, 739–750 (1994). ArticleCASPubMed Google Scholar
Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell-death protein CED-3 and mammalian interleukin-1-β- converting enzyme. J. Biol. Chem.269, 30761–30764 (1994). CASPubMed Google Scholar
Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. MCH2, a new member of the apoptotic CED-3/ICE cysteine protease gene family. Cancer Res.55, 2737–2742 (1995). CASPubMed Google Scholar
Fernandes-Alnemri, T. et al. MCH3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res.55, 6045–6052 (1995). CASPubMed Google Scholar
Duan, H., Chinnaiyan, A.M., Hudson, P.L, Wing, J.P., He, W.-W. & Dixit, V.M. ICE-LAP3, a novel mammalian homolog of the Caednorhabditis elegans cell death protein CED-3 in activated during FAS and tumor necrosis factor-induced apoptosis. J. Biol. Chem.271, 1621–1625 (1996). ArticleCASPubMed Google Scholar
Li, P. et al. Mice deficient in il-1β-converting enzyme are defective in production of mature il-1β and resistant to endotoxic shock. Cell80, 401–411 (1995). ArticleCASPubMed Google Scholar
Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting-enzyme. Science267, 2000–2003 (1995). ArticleCASPubMed Google Scholar
Ellis, R.E., Yuan, J.Y. & Horvitz, H.R. Mechanisms and functions of cell death. Annu Rev Cell Biol7, 663–698 (1991). ArticleCASPubMed Google Scholar
Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. & Yuan, J.Y. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell-death gene CED-3. Cell75, 653–660 (1993). ArticleCASPubMed Google Scholar
Yuan, J.Y., Shaham, S., Ledoux, S., Ellis, H.M. & Horvitz, H.R., The, C. The C. elegans cell-death gene CED-3 encodes a protein similar to mammalian interleukin-1-β-converting enzyme. Cell75, 641–652 (1993). ArticleCASPubMed Google Scholar
Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. & Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res.53, 3976–3985 (1993). CASPubMed Google Scholar
Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature371, 346–347 (1994). ArticleCASPubMed Google Scholar
Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature376, 37–43 (1995). ArticleCASPubMed Google Scholar
Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell81, 801–809 (1995). ArticleCASPubMed Google Scholar
Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J & Rosen, A. Specific cleavage of the 70-kDa protein-component of the u1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell-death. J. Biol. Chem.269, 30757–30760 (1994). CASPubMed Google Scholar
Casciola-Rosen, L.A., Anhalt, G.J. & Rosen, A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med.182, 1625–1634 (1995). ArticleCASPubMed Google Scholar
Casciola-Rosen, L.A. et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med.in press (1996). (AUTHOR: STATUS?)
Martin, S.J. et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol. Chem.270, 6425–6428 (1995). ArticleCASPubMed Google Scholar
Lazebnik, Y.A. et al. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natal. Acad. Sci. USA92, 9042–9046 (1995). ArticleCAS Google Scholar
Brancolini, C., Benedetti, M. & Schneider, C. Microfilament reorganization during apoptosis -the role of gas2, a possible substrate for ICE-like proteases. EMBOJ.14, 5179–5190 (1995). ArticleCAS Google Scholar
Emoto, Y. et al. Proteolyt ic activation of protein kinase Cδ by an ICE-like protease in apoptotic cells. EMBO J.14, 6148–6156 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wilson, K.P. et al. Structure and mechanism of interleukin-1β converting-enzyme. Nature370, 270–275 (1994). ArticleCASPubMed Google Scholar
Walker, N.P.C. et al. Crystal-structure of the cysteine protease interleukin-1β-converting enzyme - a (p20/p10)(2) homodimer. Cell78, 343–352 (1994). ArticleCASPubMed Google Scholar
Thornberry, N.A., Miller, D.K. & Nicholson, D.W. Interleukin-1β converting enzyme and related proteases as potential targets in inflammation and apoptosis. Perspectives in Drug Discovery and Design2, 389–399 (1995). ArticleCAS Google Scholar
Westerik, J.O. & Wolfenden, R. Aldehydes as inhibitors of papain. J. Biol. Chem.247, 8195–8197 (1972). CASPubMed Google Scholar
Ortiz, C., Tellier, C., Williams, H., Stolowich, N.J. & Scott, A.I. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: detection of two interconverting hemiacetals by solution and solid-state NMRspectroscopy. Biochemistry30, 10026–10034 (1991). ArticleCASPubMed Google Scholar
Delbaere, L.T. & Brayer, G.D. The 1. 8 Å structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates. J. Mol. Biol.183, 89–103 (1985). ArticleCASPubMed Google Scholar
Frankfater, A. & Kuppy, T. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry20, 5517–5524 (1981). ArticleCASPubMed Google Scholar
Mackenzie, N.E., Grant, S.K., Scott, A.I. & Malthouse, J.P. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes. Biochemistry25, 2293–2298 (1986). ArticleCASPubMed Google Scholar
Menard, R. et al. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry30, 8924–8928 (1991). ArticleCASPubMed Google Scholar
SAINT Software Reference Manual (Siemens Analytical Instruments, Madison, Wisconsin, 1995).
Brünger, A.T. X-PLOR: Version 3.1, a System forX-Ray Crystallography and NMR (Yale University Press, New Haven 1992). Google Scholar
Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. in Crystallographic Databases - Information Content, Software Systems, Scientific Applications (eds. Alien, F.H., Bergerhoff, G. & Sievers, R.) 107–132 (Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, 1987). Google Scholar
Sack, J.S. CHAIN - a crystallographic modeling program. J. Mol. Graphics6, 224–225 (1988). Article Google Scholar
Zhang, K.Y.J. SQUASH-combining constraints for macromolecular phase refinement and extension. Acta Crystallogr.D49, 213–222 (1993). CAS Google Scholar
Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr.A48, 851–858 (1992). ArticleCAS Google Scholar
Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Genet.23, 566–579 (1995). ArticleCASPubMed Google Scholar
Carson, M. Ribbon models of macromolecules. J. Molec. Graph.5, 103–106 (1987). ArticleCAS Google Scholar
QUANTA User Guide (Molecular Simulations, San Diego, 1996).