The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis (original) (raw)

References

  1. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).
    Article CAS PubMed Google Scholar
  2. Cerretti, D.P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).
    Article CAS PubMed Google Scholar
  3. Munday, N.A. et al. Molecular-cloning and pro-apoptotic activity of ICE(Rel)II and ICE(Rel) III, members of the ICE/CED-3 family of cysteine proteases. J Biol. Chem. 270, 15870–15876 (1995).
    Article CAS PubMed Google Scholar
  4. Faucheu, C. et al. A novel human protease similar to the interleukin-1β converting- enzyme induces apoptosis in transfected cells. EMBO J. 14, 1914–1922 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  5. Kamens, J. et al. Identification and characterization of ICH-2 a novel member of the interleukin–1β–converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15250–15256 (1995).
    Article CAS PubMed Google Scholar
  6. Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. & Jenkins, N.A. Induction of apoptosis by the mouse nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell-death gene CED-3 and the mammalian IL1-β-converting enzyme. Genes & Development 8, 1613–1626 (1994).
    Article CAS Google Scholar
  7. Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J.Y. ICH-1, an ICE/CED-3-related gene, encodes both positive and negative regulators of programmed cell-death. Cell 78, 739–750 (1994).
    Article CAS PubMed Google Scholar
  8. Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell-death protein CED-3 and mammalian interleukin-1-β- converting enzyme. J. Biol. Chem. 269, 30761–30764 (1994).
    CAS PubMed Google Scholar
  9. Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. MCH2, a new member of the apoptotic CED-3/ICE cysteine protease gene family. Cancer Res. 55, 2737–2742 (1995).
    CAS PubMed Google Scholar
  10. Fernandes-Alnemri, T. et al. MCH3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55, 6045–6052 (1995).
    CAS PubMed Google Scholar
  11. Duan, H., Chinnaiyan, A.M., Hudson, P.L, Wing, J.P., He, W.-W. & Dixit, V.M. ICE-LAP3, a novel mammalian homolog of the Caednorhabditis elegans cell death protein CED-3 in activated during FAS and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 271, 1621–1625 (1996).
    Article CAS PubMed Google Scholar
  12. Li, P. et al. Mice deficient in il-1β-converting enzyme are defective in production of mature il-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).
    Article CAS PubMed Google Scholar
  13. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting-enzyme. Science 267, 2000–2003 (1995).
    Article CAS PubMed Google Scholar
  14. Ellis, R.E., Yuan, J.Y. & Horvitz, H.R. Mechanisms and functions of cell death. Annu Rev Cell Biol 7, 663–698 (1991).
    Article CAS PubMed Google Scholar
  15. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. & Yuan, J.Y. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell-death gene CED-3. Cell 75, 653–660 (1993).
    Article CAS PubMed Google Scholar
  16. Yuan, J.Y., Shaham, S., Ledoux, S., Ellis, H.M. & Horvitz, H.R., The, C. The C. elegans cell-death gene CED-3 encodes a protein similar to mammalian interleukin-1-β-converting enzyme. Cell 75, 641–652 (1993).
    Article CAS PubMed Google Scholar
  17. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. & Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976–3985 (1993).
    CAS PubMed Google Scholar
  18. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).
    Article CAS PubMed Google Scholar
  19. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).
    Article CAS PubMed Google Scholar
  20. Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809 (1995).
    Article CAS PubMed Google Scholar
  21. Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J & Rosen, A. Specific cleavage of the 70-kDa protein-component of the u1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell-death. J. Biol. Chem. 269, 30757–30760 (1994).
    CAS PubMed Google Scholar
  22. Casciola-Rosen, L.A., Anhalt, G.J. & Rosen, A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634 (1995).
    Article CAS PubMed Google Scholar
  23. Casciola-Rosen, L.A. et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. in press (1996). (AUTHOR: STATUS?)
  24. Martin, S.J. et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol. Chem. 270, 6425–6428 (1995).
    Article CAS PubMed Google Scholar
  25. Lazebnik, Y.A. et al. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natal. Acad. Sci. USA 92, 9042–9046 (1995).
    Article CAS Google Scholar
  26. Brancolini, C., Benedetti, M. & Schneider, C. Microfilament reorganization during apoptosis -the role of gas2, a possible substrate for ICE-like proteases. EMBOJ. 14, 5179–5190 (1995).
    Article CAS Google Scholar
  27. Emoto, Y. et al. Proteolyt ic activation of protein kinase Cδ by an ICE-like protease in apoptotic cells. EMBO J. 14, 6148–6156 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  28. Wilson, K.P. et al. Structure and mechanism of interleukin-1β converting-enzyme. Nature 370, 270–275 (1994).
    Article CAS PubMed Google Scholar
  29. Walker, N.P.C. et al. Crystal-structure of the cysteine protease interleukin-1β-converting enzyme - a (p20/p10)(2) homodimer. Cell 78, 343–352 (1994).
    Article CAS PubMed Google Scholar
  30. Thornberry, N.A., Miller, D.K. & Nicholson, D.W. Interleukin-1β converting enzyme and related proteases as potential targets in inflammation and apoptosis. Perspectives in Drug Discovery and Design 2, 389–399 (1995).
    Article CAS Google Scholar
  31. Westerik, J.O. & Wolfenden, R. Aldehydes as inhibitors of papain. J. Biol. Chem. 247, 8195–8197 (1972).
    CAS PubMed Google Scholar
  32. Ortiz, C., Tellier, C., Williams, H., Stolowich, N.J. & Scott, A.I. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: detection of two interconverting hemiacetals by solution and solid-state NMRspectroscopy. Biochemistry 30, 10026–10034 (1991).
    Article CAS PubMed Google Scholar
  33. Delbaere, L.T. & Brayer, G.D. The 1. 8 Å structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates. J. Mol. Biol. 183, 89–103 (1985).
    Article CAS PubMed Google Scholar
  34. Frankfater, A. & Kuppy, T. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry 20, 5517–5524 (1981).
    Article CAS PubMed Google Scholar
  35. Mackenzie, N.E., Grant, S.K., Scott, A.I. & Malthouse, J.P. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes. Biochemistry 25, 2293–2298 (1986).
    Article CAS PubMed Google Scholar
  36. Menard, R. et al. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 30, 8924–8928 (1991).
    Article CAS PubMed Google Scholar
  37. SAINT Software Reference Manual (Siemens Analytical Instruments, Madison, Wisconsin, 1995).
  38. Brünger, A.T. X-PLOR: Version 3.1, a System forX-Ray Crystallography and NMR (Yale University Press, New Haven 1992).
    Google Scholar
  39. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. in Crystallographic Databases - Information Content, Software Systems, Scientific Applications (eds. Alien, F.H., Bergerhoff, G. & Sievers, R.) 107–132 (Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, 1987).
    Google Scholar
  40. Sack, J.S. CHAIN - a crystallographic modeling program. J. Mol. Graphics 6, 224–225 (1988).
    Article Google Scholar
  41. Zhang, K.Y.J. SQUASH-combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D49, 213–222 (1993).
    CAS Google Scholar
  42. Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).
    Article CAS Google Scholar
  43. Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Genet. 23, 566–579 (1995).
    Article CAS PubMed Google Scholar
  44. Carson, M. Ribbon models of macromolecules. J. Molec. Graph. 5, 103–106 (1987).
    Article CAS Google Scholar
  45. QUANTA User Guide (Molecular Simulations, San Diego, 1996).

Download references