Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster (original) (raw)

References

  1. Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).
    Article CAS Google Scholar
  2. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J. & Liddington, R.C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).
    Article CAS Google Scholar
  3. Beglova, N., Blacklow, S.C., Takagi, J. & Springer, T.A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat. Struct. Biol. 9, 282–287 (2002).
    Article CAS Google Scholar
  4. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).
    Article CAS Google Scholar
  5. Takagi, J., Petre, B.M., Walz, T. & Springer, T.A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002).
    Article CAS Google Scholar
  6. Takagi, J., Strokovich, K., Springer, T.A. & Walz, T. Structure of integrin α5β1 in complex with fibronectin. EMBO J. 22, 4607–4615 (2003).
    Article CAS Google Scholar
  7. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).
    Article CAS Google Scholar
  8. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).
    Article CAS Google Scholar
  9. Marlin, S.D. & Springer, T.A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51, 813–819 (1987).
    Article CAS Google Scholar
  10. Gailit, J. & Ruoslahti, E. Regulation of the fibronectin receptor affinity by divalent cations. J. Biol. Chem. 263, 12927–12932 (1988).
    CAS PubMed Google Scholar
  11. Dransfield, I., Cabañas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell Biol. 116, 219–226 (1992).
    Article CAS Google Scholar
  12. Staatz, W.D., Rajpara, S.M., Wayner, E.A., Carter, W.G. & Santoro, S.A. The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J. Cell Biol. 108, 1917–1924 (1989).
    Article CAS Google Scholar
  13. Mould, A.P., Akiyama, S.K. & Humphries, M.J. Regulation of integrin α5β1-fibronectin interactions by divalent cations. J. Biol. Chem. 270, 26270–26277 (1995).
    Article CAS Google Scholar
  14. Hu, D.D., Hoyer, J.R. & Smith, J.W. Ca2+ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin αvβ3. J. Biol. Chem. 270, 9917–9925 (1995).
    Article CAS Google Scholar
  15. Leitinger, B., McDowall, A., Stanley, P. & Hogg, N. The regulation of integrin function by Ca2+. Biochim. Biophys. Acta 1498, 91–98 (2000).
    Article CAS Google Scholar
  16. Berlin, C. et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413–422 (1995).
    Article CAS Google Scholar
  17. Alon, R. et al. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J. Cell Biol. 128, 1243–1253 (1995).
    Article CAS Google Scholar
  18. de Chateau, M., Chen, S., Salas, A. & Springer, T.A. Kinetic and mechanical basis of rolling through an integrin and novel Ca2+-dependent rolling and Mg2+-dependent firm adhesion modalities for the α4β7–MAdCAM-1 interaction. Biochemistry 40, 13972–13979 (2001).
    Article CAS Google Scholar
  19. Springer, T.A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002).
    Article CAS Google Scholar
  20. Pujades, C. et al. Defining extracellular integrin α chain sites that affect cell adhesion and adhesion strengthening without altering soluble ligand binding. Mol. Biol. Cell 8, 2647–2657 (1997).
    Article CAS Google Scholar
  21. Knorr, R. & Dustin, M.L. The lymphocyte function-associated antigen 1 I domain is a transient binding module for intercellular adhesion molecule (ICAM)-1 and ICAM-1 in hydrodynamic flow. J. Exp. Med. 186, 719–730 (1997).
    Article CAS Google Scholar
  22. Lu, C., Shimaoka, M., Zang, Q., Takagi, J. & Springer, T.A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proc. Natl. Acad. Sci. USA 98, 2393–2398 (2001).
    Article CAS Google Scholar
  23. Salas, A., Shimaoka, M., Chen, S., Carman, C.V. & Springer, T.A. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin LFA-1. J. Biol. Chem. 277, 50255–50262 (2002).
    Article CAS Google Scholar
  24. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).
    CAS Google Scholar
  25. Bargatze, R.F., Jutila, M.A. & Butcher, E.C. Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3, 99–108 (1995).
    Article CAS Google Scholar
  26. Briskin, M.J., McEvoy, L.M. & Butcher, E.C. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature 363, 461–464 (1993).
    Article CAS Google Scholar
  27. Chang, K.-C., Tees, D.F. & Hammer, D.A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA 97, 11262–11267 (2000).
    Article CAS Google Scholar
  28. Harding, M.M. Geometry of metal-ligand interactions in proteins. Acta Crystallogr. D 57, 401–411 (2001).
    Article CAS Google Scholar
  29. Tidswell, M. et al. Structure-function analysis of the integrin β7 subunit: Identification of domains involved in adhesion to MAdCAM-1. J. Immunol. 159, 1497–1505 (1997).
    CAS PubMed Google Scholar
  30. Lu, C. & Springer, T.A. The α subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte function-associated antigen-1 (LFA-1). J. Immunol. 159, 268–278 (1997).
    CAS PubMed Google Scholar
  31. Lu, C., Oxvig, C. & Springer, T.A. The structure of the β-propeller domain and C-terminal region of the integrin αM subunit. J. Biol. Chem. 273, 15138–15147 (1998).
    Article CAS Google Scholar
  32. Kassner, P.D. & Hemler, M.E. Interchangeable α chain cytoplasmic domains play a positive role in control of cell adhesion mediated by VLA-4, a β1 integrin. J. Exp. Med. 178, 649–660 (1993).
    Article CAS Google Scholar
  33. Lazarovits, A.I. et al. Lymphocyte activation antigens: I. A monoclonal antibody, anti-act I, defines a new late lymphocyte activation antigen. J. Immunol. 133, 1857–1862 (1984).
    CAS PubMed Google Scholar
  34. Schweighoffer, T. et al. Selective expression of integrin α4β7 on a subset of human CD4+ memory T cells with hallmarks of gut-trophism. J. Immunol. 151, 717–729 (1993).
    CAS PubMed Google Scholar
  35. Lawrence, M.B. & Springer, T.A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873 (1991).
    Article CAS Google Scholar

Download references