Structural insights into the U-box, a domain associated with multi-ubiquitination (original) (raw)

References

  1. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
    Article CAS Google Scholar
  2. Cyr, D.M., Hohfeld, J. & Patterson, C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368–375 (2002).
    Article CAS Google Scholar
  3. Patterson, C. A new gun in town: the U box is a ubiquitin ligase domain. Sci. STKE [online] <http://stke.sciencemag.org/cgi/content/full/ OC_sigtraus;2002/116/pe4> (2002).
  4. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).
    Article CAS Google Scholar
  5. Aravind, L. & Koonin, E.V. The U box is a modified RING finger — a common domain in ubiquitination. Curr. Biol. 10, R132–R134 (2000).
    Article CAS Google Scholar
  6. Tarn, W.Y., Lee, K.R. & Cheng, S.C. Yeast precursor mRNA processing protein PRP19 associates with the spliceosome concomitant with or just after dissociation of U4 small nuclear RNA. Proc. Natl. Acad. Sci. USA 90, 10821–10825 (1993).
    Article CAS Google Scholar
  7. McDonald, W.H., Ohi, R., Smelkova, N., Frendewey, D. & Gould, K.L. Myb-related fission yeast Cdc5p is a component of a 40S snRNP-containing complex and is essential for pre-mRNA splicing. Mol. Cell. Biol. 19, 5352–5362 (1999).
    Article CAS Google Scholar
  8. Chen, H.R. et al. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol. Cell. Biol. 18, 2196–2204 (1998).
    Article CAS Google Scholar
  9. Ohi, M.D. & Gould, K.L. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA 8, 798–815 (2002).
    Article CAS Google Scholar
  10. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. & Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, San Diego; 1996).
    Google Scholar
  11. Gervais, V. et al. Solution structure of the N-terminal domain of the human TFIIH MAT1 subunit: new insights into the RING finger family. J. Biol. Chem. 276, 7457–7464 (2001).
    Article CAS Google Scholar
  12. Hanzawa, H. et al. The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. J. Biol. Chem. 276, 10185–10190 (2001).
    Article CAS Google Scholar
  13. Bellon, S.F., Rodgers, K.K., Schatz, D.G., Coleman, J.E. & Steitz, T.A. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat. Struct. Biol. 4, 586–591 (1997).
    Article CAS Google Scholar
  14. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).
    Article CAS Google Scholar
  15. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).
    Article CAS Google Scholar
  16. Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C. & Klevit, R.E. Structure of a BRCA1–BARD1 heterodimeric RING–RING complex. Nat. Struct. Biol. 8, 833–837 (2001).
    Article CAS Google Scholar
  17. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111–33120 (2001).
    Article CAS Google Scholar
  18. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).
    Article CAS Google Scholar
  19. Pringa, E., Martinez-Noel, G., Muller, U. & Harbers, K. Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes. J. Biol. Chem. 276, 19617–19623 (2001).
    Article CAS Google Scholar
  20. Chen, H.R. et al. Snt309p, a component of the Prp19p-associated complex that interacts with Prp19p and associates with the spliceosome simultaneously with or immediately after dissociation of U4 in the same manner as Prp19p. Mol. Cell. Biol. 18, 2196–2204 (1998).
    Article CAS Google Scholar
  21. Vijayraghavan, U., Company, M. & Abelson, J. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 3, 1206–1216 (1989).
    Article CAS Google Scholar
  22. Jiang, J. et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276, 42938–42944 (2001).
    Article CAS Google Scholar
  23. Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138 (2001).
    Article CAS Google Scholar
  24. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell. Biol. 3, 100–105 (2001).
    Article CAS Google Scholar
  25. Imai, Y. et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell 10, 55–67 (2002).
    Article CAS Google Scholar
  26. Tarn, W.Y. et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13, 2421–2431 (1994).
    Article CAS Google Scholar
  27. Bartels, C., Xia, T., Billeter, M., Guntert, P. & Wuthrich, K. XEASY. J. Biomol. NMR 6, 1–10 (1995).
    Article CAS Google Scholar
  28. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).
    Article CAS Google Scholar
  29. Guntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).
    Article CAS Google Scholar
  30. Pearlman, D.A. et al. AMBER 4.1 (San Francisco, CA.: University of California, San Francisco; 1995).
    Google Scholar
  31. Maler, L., Potts, B.C. & Chazin, W.J. High resolution solution structure of apo calcyclin and structural variations in the S100 family of calcium-binding proteins. J. Biomol. NMR 13, 233–247 (1999).
    Article CAS Google Scholar
  32. Maler, L., Blankenship, J., Rance, M. & Chazin, W.J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol. 7, 245–250 (2000).
    Article CAS Google Scholar
  33. Sastry, M. et al. The three-dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins. Structure 6, 223–231 (1998).
    Article CAS Google Scholar
  34. Lackner, P., Koppensteiner, W.A., Sippl, M.J. & Domingues, F.S. ProSup: a refined tool for protein structure alignment. Protein Eng. 13, 745–752 (2000).
    Article CAS Google Scholar
  35. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).
    Article CAS Google Scholar
  36. Laskowski, R.A., Rullman, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
    Article CAS Google Scholar

Download references