Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT (original) (raw)
References
Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev.12, 198–209 (2002). ArticleCAS Google Scholar
Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol.14, 286–298 (2002). ArticleCAS Google Scholar
Rice, J.C. & Allis, C.D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol.13, 263–273 (2001). ArticleCAS Google Scholar
Strahl, B.D., Ohba, R., Cook, R.G. & Allis, C.D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA96, 14967–14972 (1999). ArticleCAS Google Scholar
Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). ArticleCAS Google Scholar
Houtz, R.L., Stults, J.T., Mulligan, R.M. & Tolbert, N.E. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc. Natl. Acad. Sci. USA86, 1855–1859 (1989). ArticleCAS Google Scholar
Klein, R.R. & Houtz, R.L. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit _N_-methyltransferase. Plant Mol. Biol.27, 249–261 (1995). ArticleCAS Google Scholar
Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA95, 5857–5864 (1998). ArticleCAS Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). ArticleCAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCAS Google Scholar
Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCAS Google Scholar
Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCAS Google Scholar
Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA99, 8695–8700 (2002). ArticleCAS Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). ArticleCAS Google Scholar
Zhang, X. et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell111, 117–127 (2002). ArticleCAS Google Scholar
Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol.9, 833–838 (2002). CASPubMed Google Scholar
Kwon, T. et al. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J.22, 292–303 (2003). ArticleCAS Google Scholar
Wilson, J.R. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell111, 105–115 (2002). ArticleCAS Google Scholar
Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature421, 652–656 (2003). ArticleCAS Google Scholar
Min, J., Zhang, X., Cheng, X., Grewal, S.I. & Xu, R.M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol.9, 828–832 (2002). CASPubMed Google Scholar
Manzur, K.L. et al. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat. Struct. Biol.10, 187–196 (2003). ArticleCAS Google Scholar
Trievel, R.C., Beach, B.M., Dirk, L.M., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell111, 91–103 (2002). ArticleCAS Google Scholar
Marmorstein, R. Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci.28, 59–62 (2003). ArticleCAS Google Scholar
Yeates, T.O. Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell111, 5–7 (2002). ArticleCAS Google Scholar
Dutnall, R.N. & Denu, J.M. Methyl magic and HAT tricks. Nat. Struct. Biol.9, 888–891 (2002). ArticleCAS Google Scholar
Houtz, R.L., Poneleit, L., Jones, S.B., Royer, M. & Stults, J.T. Posttranslational modifications in the amino-terminal region of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from several plant species. Plant Physiol.98, 1170–1174 (1992). ArticleCAS Google Scholar
Houtz, R.L., Royer, M. & Salvucci, M.E. Partial purification and characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit _N_-methyltransferase. Plant Physiol.97, 913–920 (1991). ArticleCAS Google Scholar
Segel, I.H. Enzyme Kinetics (John Wiley & Sons, New York; 1975). Google Scholar
Derewenda, Z.S., Lee, L. & Derewenda, U. The occurrence of C-H...O hydrogen bonds in proteins. J. Mol. Biol.252, 248–262 (1995). ArticleCAS Google Scholar
Bella, J. & Berman, H.M. Crystallographic evidence for Cα-H...O=C hydrogen bonds in a collagen triple helix. J. Mol. Biol.264, 734–742 (1996). ArticleCAS Google Scholar
Fabiola, G.F., Krishnaswamy, S., Nagarajan, V. & Pattabhi, V. C-H...O hydrogen bonds in β-sheets. Acta Crystallogr. D53, 316–320 (1997). ArticleCAS Google Scholar
Wahl, M.C. & Sundaralingam, M. C-H...O hydrogen bonding in biology. Trends Biochem. Sci.22, 97–101 (1997). ArticleCAS Google Scholar
Senes, A., Ubarretxena-Belandia, I. & Engelman, D.M. The Cα-H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Pro. Natl. Acad. Sci. USA98, 9056–9061 (2001). ArticleCAS Google Scholar
Weiss, M.S., Brandl, M., Suhnel, J., Pal, D. & Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci.26, 521–523 (2001). ArticleCAS Google Scholar
Scheiner, S., Kar, T. & Gu, Y. Strength of the Cα-H...O hydrogen bond of amino acid residues. J. Biol. Chem.276, 9832–9837 (2001). ArticleCAS Google Scholar
Derewenda, Z.S., Derewenda, U. & Kobos, P.M. (His)Cε-H...O=C < hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol.241, 83–93 (1994). ArticleCAS Google Scholar
Bach, R.D., Thorpe, C., & Dmitrenko, O. C-H...carboxylate oxygen hydrogen bonding in substrate activation by acyl-CoA dehydrogenases: synergy between the H-bonds. J. Phys. Chem.106, 4325–4335 (2002). ArticleCAS Google Scholar
Coward, J.K. Chemical mechanisms of methyl transfer reactions: comparison of methylases with nonenyzmatic 'model reactions' in The Biochemistry of Adenosylmethionine (eds. Salvatore, F., Borek, E., Zappia, V., William-Ashman, H.G. & Schlenk, F.) 127–144 (Columbia University Press, New York; 1977). Google Scholar
Duff, A.P., Andrews, T.J. & Curmi, P.M. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol.298, 903–916 (2000). ArticleCAS Google Scholar
Rebouche, C.J. & Broquist, H.P. Carnitine biosynthesis in Neurospora crassa: enzymatic conversion of lysine to ε-_N_-trimethyllysine. J. Bacteriol.126, 1207–1214 (1976). CASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model.15, 132–134 (1997). ArticleCAS Google Scholar
Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D55, 938–940 (1999). ArticleCAS Google Scholar
Merritt, E.A. & Bacon, D.J. Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol.277, 505–524 (1997). ArticleCAS Google Scholar
Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997). ArticleCAS Google Scholar
Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.24, 946–950 (1993). Google Scholar