Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT (original) (raw)

References

  1. Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209 (2002).
    Article CAS Google Scholar
  2. Lachner, M. & Jenuwein, T. The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298 (2002).
    Article CAS Google Scholar
  3. Rice, J.C. & Allis, C.D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263–273 (2001).
    Article CAS Google Scholar
  4. Strahl, B.D., Ohba, R., Cook, R.G. & Allis, C.D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 96, 14967–14972 (1999).
    Article CAS Google Scholar
  5. Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).
    Article CAS Google Scholar
  6. Houtz, R.L., Stults, J.T., Mulligan, R.M. & Tolbert, N.E. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc. Natl. Acad. Sci. USA 86, 1855–1859 (1989).
    Article CAS Google Scholar
  7. Klein, R.R. & Houtz, R.L. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit _N_-methyltransferase. Plant Mol. Biol. 27, 249–261 (1995).
    Article CAS Google Scholar
  8. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).
    Article CAS Google Scholar
  9. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
    Article CAS Google Scholar
  10. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
    Article CAS Google Scholar
  11. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
    Article CAS Google Scholar
  12. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).
    Article CAS Google Scholar
  13. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).
    Article CAS Google Scholar
  14. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).
    Article CAS Google Scholar
  15. Zhang, X. et al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117–127 (2002).
    Article CAS Google Scholar
  16. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).
    CAS PubMed Google Scholar
  17. Kwon, T. et al. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J. 22, 292–303 (2003).
    Article CAS Google Scholar
  18. Wilson, J.R. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111, 105–115 (2002).
    Article CAS Google Scholar
  19. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).
    Article CAS Google Scholar
  20. Min, J., Zhang, X., Cheng, X., Grewal, S.I. & Xu, R.M. Structure of the SET domain histone lysine methyltransferase Clr4. Nat. Struct. Biol. 9, 828–832 (2002).
    CAS PubMed Google Scholar
  21. Manzur, K.L. et al. A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat. Struct. Biol. 10, 187–196 (2003).
    Article CAS Google Scholar
  22. Trievel, R.C., Beach, B.M., Dirk, L.M., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).
    Article CAS Google Scholar
  23. Marmorstein, R. Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28, 59–62 (2003).
    Article CAS Google Scholar
  24. Yeates, T.O. Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell 111, 5–7 (2002).
    Article CAS Google Scholar
  25. Dutnall, R.N. & Denu, J.M. Methyl magic and HAT tricks. Nat. Struct. Biol. 9, 888–891 (2002).
    Article CAS Google Scholar
  26. Houtz, R.L., Poneleit, L., Jones, S.B., Royer, M. & Stults, J.T. Posttranslational modifications in the amino-terminal region of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from several plant species. Plant Physiol. 98, 1170–1174 (1992).
    Article CAS Google Scholar
  27. Houtz, R.L., Royer, M. & Salvucci, M.E. Partial purification and characterization of ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit _N_-methyltransferase. Plant Physiol. 97, 913–920 (1991).
    Article CAS Google Scholar
  28. Segel, I.H. Enzyme Kinetics (John Wiley & Sons, New York; 1975).
    Google Scholar
  29. Derewenda, Z.S., Lee, L. & Derewenda, U. The occurrence of C-H...O hydrogen bonds in proteins. J. Mol. Biol. 252, 248–262 (1995).
    Article CAS Google Scholar
  30. Bella, J. & Berman, H.M. Crystallographic evidence for Cα-H...O=C hydrogen bonds in a collagen triple helix. J. Mol. Biol. 264, 734–742 (1996).
    Article CAS Google Scholar
  31. Fabiola, G.F., Krishnaswamy, S., Nagarajan, V. & Pattabhi, V. C-H...O hydrogen bonds in β-sheets. Acta Crystallogr. D 53, 316–320 (1997).
    Article CAS Google Scholar
  32. Wahl, M.C. & Sundaralingam, M. C-H...O hydrogen bonding in biology. Trends Biochem. Sci. 22, 97–101 (1997).
    Article CAS Google Scholar
  33. Senes, A., Ubarretxena-Belandia, I. & Engelman, D.M. The Cα-H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Pro. Natl. Acad. Sci. USA 98, 9056–9061 (2001).
    Article CAS Google Scholar
  34. Weiss, M.S., Brandl, M., Suhnel, J., Pal, D. & Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26, 521–523 (2001).
    Article CAS Google Scholar
  35. Scheiner, S., Kar, T. & Gu, Y. Strength of the Cα-H...O hydrogen bond of amino acid residues. J. Biol. Chem. 276, 9832–9837 (2001).
    Article CAS Google Scholar
  36. Derewenda, Z.S., Derewenda, U. & Kobos, P.M. (His)Cε-H...O=C < hydrogen bond in the active sites of serine hydrolases. J. Mol. Biol. 241, 83–93 (1994).
    Article CAS Google Scholar
  37. Bach, R.D., Thorpe, C., & Dmitrenko, O. C-H...carboxylate oxygen hydrogen bonding in substrate activation by acyl-CoA dehydrogenases: synergy between the H-bonds. J. Phys. Chem. 106, 4325–4335 (2002).
    Article CAS Google Scholar
  38. Coward, J.K. Chemical mechanisms of methyl transfer reactions: comparison of methylases with nonenyzmatic 'model reactions' in The Biochemistry of Adenosylmethionine (eds. Salvatore, F., Borek, E., Zappia, V., William-Ashman, H.G. & Schlenk, F.) 127–144 (Columbia University Press, New York; 1977).
    Google Scholar
  39. Duff, A.P., Andrews, T.J. & Curmi, P.M. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol. 298, 903–916 (2000).
    Article CAS Google Scholar
  40. Rebouche, C.J. & Broquist, H.P. Carnitine biosynthesis in Neurospora crassa: enzymatic conversion of lysine to ε-_N_-trimethyllysine. J. Bacteriol. 126, 1207–1214 (1976).
    CAS PubMed PubMed Central Google Scholar
  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS Google Scholar
  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS Google Scholar
  43. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  44. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).
    Article CAS Google Scholar
  45. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).
    Article CAS Google Scholar
  46. Merritt, E.A. & Bacon, D.J. Raster3D version 2.0: a program for photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
    Article CAS Google Scholar
  47. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).
    Article CAS Google Scholar
  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 24, 946–950 (1993).
    Google Scholar

Download references