All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ (original) (raw)
- Article
- Published: 07 September 2003
- Dominica Willmann2 na1,
- Denis Zeyer1,
- Sarah Sanglier3,
- Alain Van Dorsselaer3,
- Jean-Paul Renaud1,
- Dino Moras1 &
- …
- Roland Schüle2
Nature Structural & Molecular Biology volume 10, pages 820–825 (2003)Cite this article
- 2044 Accesses
- 9 Altmetric
- Metrics details
Abstract
Retinoids regulate gene expression through binding to the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). In contrast, no ligands for the retinoic acid receptor–related orphan receptors β and γ (RORβ and γ) have been identified, yet structural data and structure-function analyses indicate that RORβ is a ligand-regulated nuclear receptor. Using nondenaturing mass spectrometry and scintillation proximity assays we found that all-trans retinoic acid (ATRA) and several retinoids bind to the RORβ ligand-binding domain (LBD). The crystal structures of the complex with ATRA and with the synthetic analog ALRT 1550 reveal the binding modes of these ligands. ATRA and related retinoids inhibit RORβ but not RORα transcriptional activity suggesting that high-affinity, subtype-specific ligands could be designed for the identification of RORβ target genes. Our results identify RORβ as a retinoid-regulated nuclear receptor, providing a novel pathway for retinoid action.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
Accession codes
Accessions
Protein Data Bank
References
- Jetten, A., Kurebayashi, S. & Ueda, E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog. Nucl. Acid Res. Mol. Biol. 69, 205–247 (2001).
Article CAS Google Scholar - Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).
Article CAS Google Scholar - Ueda, H.R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002).
Article CAS Google Scholar - Greiner, E.F. et al. Functional analysis of retinoid Z receptor β, a brain-specific nuclear orphan receptor. Proc. Natl. Acad. Sci. USA 93, 10105–10110 (1996).
Article CAS Google Scholar - Greiner, E.F. et al. Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Proc. Natl. Acad. Sci. USA 97, 7160–7165 (2000).
Article CAS Google Scholar - Moraitis, A.N., Giguère, V. & Thompson, C.C. Novel mechanism of nuclear receptor corepressor interaction dictated by activation function 2 helix determinants. Mol. Cell. Biol. 22, 6831–6841 (2002).
Article CAS Google Scholar - Stehlin, C. et al. X-ray structure of the orphan nuclear receptor RORβ ligand-binding domain in the active conformation. EMBO J. 20, 5822–5831 (2001).
Article CAS Google Scholar - Potier, N. et al. Using non-denaturing mass spectrometry to detect fortuitous ligands in orphan receptors. Protein Sci. 12, 725–733 (2003).
Article CAS Google Scholar - Loo, J.A. Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int. J. Mass Spectrom. 200, 175–186 (2000).
Article CAS Google Scholar - Renaud, J.P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).
Article CAS Google Scholar - Kallen, J.A. et al. X-ray structure of the hRORα LBD at 1.63 Å. Structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure 10, 1697–1707 (2002).
Article CAS Google Scholar - Blumberg, B. et al. Novel retinoic acid receptor ligand in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 4873–4878 (1996).
Article CAS Google Scholar - Kurlandsky, S.B. et al. Plasma delivery of retinoic acid to tissues in the rat. J. Biol. Chem. 270, 17850–17857 (1995).
Article CAS Google Scholar - Forman, B.M. et al. Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature 395, 612–615 (1998).
Article CAS Google Scholar - Tremblay, G.B. et al. Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERRβ. Genes Dev. 15, 833–838 (2001).
Article CAS Google Scholar - Coward, P., Lee, D., Hull, M.V. & Lehmann, J. 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor γ. Proc. Natl. Acad. Sci. USA 98, 8880–8884 (2001).
Article CAS Google Scholar - Greschik, H. et al. Structural and functional evidence for ligand-independent transcriptional activation by the estrogen-related receptor 3. Mol. Cell 9, 303–313 (2002).
Article CAS Google Scholar - Pike, A.C.W. et al. Structure of the ligand-binding domain of oestrogen receptor β in the presence of a partial agonist and a full antagonist. EMBO J. 18, 4608–4618 (1999).
Article CAS Google Scholar - Nolte, R.T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998).
Article CAS Google Scholar - Watkins, R.E. et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333 (2001).
Article CAS Google Scholar - Bourguet, W. et al. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol. Cell 5, 289–298 (2000).
Article CAS Google Scholar - McNamara et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877–889 (2001).
Article CAS Google Scholar - Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
Article CAS Google Scholar - Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).
Article Google Scholar - Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 47, 110–119 (1998).
Google Scholar - Kleywegt, G.J. & Jones, T.A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D 50, 178–185 (1994).
Article CAS Google Scholar - Müller, J.M. et al. The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. EMBO J. 21, 736–748 (2002).
Article Google Scholar - Geoghegan, K.F. et al. Spontaneous α-_N_-6-phosphogluconoylation of a 'His tag' in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal. Biochem. 267, 169–184 (1999).
Article CAS Google Scholar
Acknowledgements
We thank M. Salvati from Bristol-Myers Squibb for the gift of ALRT 1550 and M. Klaus from Roche for the gift of RO 41-5253 and all-_trans_-4-oxo retinoic acid, P. Eberling for peptide synthesis, B. Blumberg for advice in performing scintillation proximity assays, P. Carpentier for support on ESRF beamline BM14 CRG and C. Schulze-Briese for support on the SLS X065A beamline, J. Cavarelli for help with the ALRT-complex data, and G. Tocchini-Valentini, V. Lamour and P. Hublitz for useful discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft to R.S. and by funds from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur de Strasbourg and the Fond National de la Science to the Strasbourg Génopole. We acknowledge the financial support of the European Union for the international research project SPINE. S.S. acknowledges a grant from the CNRS and Eli Lilly.
Author information
Author notes
- Catherine Stehlin-Gaon and Dominica Willmann: These authors contributed equally to the work.
Authors and Affiliations
- Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, Illkirch, 67404, France
Catherine Stehlin-Gaon, Denis Zeyer, Jean-Paul Renaud & Dino Moras - Universitäts-Frauenklinik, Zentrum für Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, Freiburg, 79106, Germany
Dominica Willmann & Roland Schüle - Laboratoire de Spectrométrie de Masse Bio-Organique, Ecole de Chimie, Polymères et Matériaux, 25 rue Becquerel, Strasbourg, 67087, France
Sarah Sanglier & Alain Van Dorsselaer
Authors
- Catherine Stehlin-Gaon
You can also search for this author inPubMed Google Scholar - Dominica Willmann
You can also search for this author inPubMed Google Scholar - Denis Zeyer
You can also search for this author inPubMed Google Scholar - Sarah Sanglier
You can also search for this author inPubMed Google Scholar - Jean-Paul Renaud
You can also search for this author inPubMed Google Scholar - Dino Moras
You can also search for this author inPubMed Google Scholar - Roland Schüle
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDino Moras.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Stehlin-Gaon, C., Willmann, D., Zeyer, D. et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor RORβ.Nat Struct Mol Biol 10, 820–825 (2003). https://doi.org/10.1038/nsb979
- Received: 28 October 2002
- Accepted: 31 July 2003
- Published: 07 September 2003
- Issue Date: 01 October 2003
- DOI: https://doi.org/10.1038/nsb979