The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules (original) (raw)

References

  1. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).
    Article CAS Google Scholar
  2. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826 (2005).
    Article CAS Google Scholar
  3. Ueda, J., Tachibana, M., Ikura, T. & Shinkai, Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J. Biol. Chem. 281, 20120–20128 (2006).
    Article CAS Google Scholar
  4. Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K.L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat. Immunol. 5, 299–308 (2004).
    Article CAS Google Scholar
  5. Nishio, H. & Walsh, M.J. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc. Natl. Acad. Sci. USA 101, 11257–11262 (2004).
    Article CAS Google Scholar
  6. Roopra, A., Qazi, R., Schoenike, B., Daley, T.J. & Morrison, J.F. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738 (2004).
    Article CAS Google Scholar
  7. Lee, D.Y., Northrop, J.P., Kuo, M.H. & Stallcup, M.R. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J. Biol. Chem. 281, 8476–8485 (2006).
    Article CAS Google Scholar
  8. Collins, R.E. et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem. 280, 5563–5570 (2005).
    Article CAS Google Scholar
  9. Duan, Z., Zarebski, A., Montoya-Durango, D., Grimes, H.L. & Horwitz, M. GFI1 coordinates epigenetic repression of p21(Cip/WAF1) by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol. Cell. Biol. 25, 10338–10351 (2005).
    Article CAS Google Scholar
  10. Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
    Article CAS Google Scholar
  11. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
    Article CAS Google Scholar
  12. Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).
    Article CAS Google Scholar
  13. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).
    Article CAS Google Scholar
  14. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96–99 (2006).
    Article CAS Google Scholar
  15. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
    Article CAS Google Scholar
  16. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).
    Article CAS Google Scholar
  17. Grewal, S.I.S. & Jia, S.T. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).
    Article CAS Google Scholar
  18. Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722 (2007).
    Article CAS Google Scholar
  19. Lee, Y.H., Campbell, H.D. & Stallcup, M.R. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol. 24, 2103–2117 (2004).
    Article CAS Google Scholar
  20. Wilkinson, K.D. Quantitative analysis of protein-protein interactions. Methods Mol. Biol. 261, 15–32 (2004).
    CAS PubMed Google Scholar
  21. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
    Article CAS Google Scholar
  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS Google Scholar
  23. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J.E. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 501–520 (2000).
    Article Google Scholar
  24. Storoni, L.C., Mccoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).
    Article Google Scholar
  25. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the olcation of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  26. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article CAS Google Scholar

Download references