The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules (original) (raw)
References
Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16, 1779–1791 (2002). ArticleCAS Google Scholar
Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev.19, 815–826 (2005). ArticleCAS Google Scholar
Ueda, J., Tachibana, M., Ikura, T. & Shinkai, Y. Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J. Biol. Chem.281, 20120–20128 (2006). ArticleCAS Google Scholar
Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K.L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat. Immunol.5, 299–308 (2004). ArticleCAS Google Scholar
Nishio, H. & Walsh, M.J. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc. Natl. Acad. Sci. USA101, 11257–11262 (2004). ArticleCAS Google Scholar
Roopra, A., Qazi, R., Schoenike, B., Daley, T.J. & Morrison, J.F. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell14, 727–738 (2004). ArticleCAS Google Scholar
Lee, D.Y., Northrop, J.P., Kuo, M.H. & Stallcup, M.R. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J. Biol. Chem.281, 8476–8485 (2006). ArticleCAS Google Scholar
Collins, R.E. et al. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J. Biol. Chem.280, 5563–5570 (2005). ArticleCAS Google Scholar
Duan, Z., Zarebski, A., Montoya-Durango, D., Grimes, H.L. & Horwitz, M. GFI1 coordinates epigenetic repression of p21(Cip/WAF1) by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol. Cell. Biol.25, 10338–10351 (2005). ArticleCAS Google Scholar
Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCAS Google Scholar
Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell127, 1361–1373 (2006). ArticleCAS Google Scholar
Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature442, 86–90 (2006). ArticleCAS Google Scholar
Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature442, 96–99 (2006). ArticleCAS Google Scholar
Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCAS Google Scholar
Jenuwein, T. & Allis, C.D. Translating the histone code. Science293, 1074–1080 (2001). ArticleCAS Google Scholar
Lan, F. et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature448, 718–722 (2007). ArticleCAS Google Scholar
Lee, Y.H., Campbell, H.D. & Stallcup, M.R. Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity. Mol. Cell. Biol.24, 2103–2117 (2004). ArticleCAS Google Scholar
Wilkinson, K.D. Quantitative analysis of protein-protein interactions. Methods Mol. Biol.261, 15–32 (2004). CASPubMed Google Scholar
Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif.41, 207–234 (2005). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Kelley, L.A., MacCallum, R.M. & Sternberg, M.J.E. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol.299, 501–520 (2000). Article Google Scholar
Storoni, L.C., Mccoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr.60, 432–438 (2004). Article Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the olcation of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar