Sul, H.S. & Smith, S. Fatty acid synthesis in eukaryotes. in Biochemistry of Lipids, Lipoproteins and Membranes (ed. Vance, D.E.a.V. J.E.) 155–190 (Elsevier, Amsterdam; Oxford, 2008). Chapter Google Scholar
Kuhajda, F.P. et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci. USA91, 6379–6383 (1994). ArticleCAS Google Scholar
Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science288, 2379–2381 (2000). ArticleCAS Google Scholar
Jenni, S. et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science316, 254–261 (2007). ArticleCAS Google Scholar
Lomakin, I.B., Xiong, Y. & Steitz, T.A. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell129, 319–332 (2007). Article Google Scholar
Asturias, F.J. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol.12, 225–232 (2005). ArticleCAS Google Scholar
Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science311, 1258–1262 (2006). ArticleCAS Google Scholar
Rangan, V.S., Joshi, A.K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry40, 10792–10799 (2001). ArticleCAS Google Scholar
Witkowski, A. et al. Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. J. Biol. Chem.274, 11557–11563 (1999). ArticleCAS Google Scholar
Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J. & Knight, P.J. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol.147, 247–258 (2004). ArticleCAS Google Scholar
Joshi, A.K., Witkowski, A., Berman, H.A., Zhang, L. & Smith, S. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase. Biochemistry44, 4100–4107 (2005). ArticleCAS Google Scholar
Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech.9, 359–394 (1988). ArticleCAS Google Scholar
Keatinge-Clay, A.T. & Stroud, R.M. The structure of a ketoreductase determines the organization of the β-carbon processing enzymes of modular polyketide synthases. Structure14, 737–748 (2006). ArticleCAS Google Scholar
Smith, S. & Tsai, S.C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep.24, 1041–1072 (2007). ArticleCAS Google Scholar
Horton, J.R., Sawada, K., Nishibori, M. & Cheng, X. Structural basis for inhibition of histamine _N_-methyltransferase by diverse drugs. J. Mol. Biol.353, 334–344 (2005). ArticleCAS Google Scholar
Tang, Y., Kim, C.Y., Mathews, I.I., Cane, D.E. & Khosla, C. The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl. Acad. Sci. USA103, 11124–11129 (2006). ArticleCAS Google Scholar
Cheng, Y. et al. Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J. Mol. Biol.355, 1048–1065 (2006). ArticleCAS Google Scholar
Joshi, A.K. & Smith, S. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem.268, 22508–22513 (1993). CASPubMed Google Scholar
Witkowski, A., Joshi, A.K., Lindqvist, Y. & Smith, S. Conversion of a β-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry38, 11643–11650 (1999). ArticleCAS Google Scholar
Tang, Y., Chen, A.Y., Kim, C.Y., Cane, D.E. & Khosla, C. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem. Biol.14, 931–943 (2007). ArticleCAS Google Scholar
Chen, Z.J. et al. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. J. Mol. Biol.379, 830–844 (2008). ArticleCAS Google Scholar
Joshi, A.K., Rangan, V.S., Witkowski, A. & Smith, S. Engineering of an active animal fatty acid synthase dimer with only one competent subunit. Chem. Biol.10, 169–173 (2003). ArticleCAS Google Scholar
Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science321, 1315–1322 (2008). ArticleCAS Google Scholar
Smith, S. & Abraham, S. Fatty acid synthase from lactating rat mammary gland. Methods Enzymol.35, 65–74 (1975). ArticleCAS Google Scholar
Tischendorf, G.W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet.134, 187–208 (1974). ArticleCAS Google Scholar
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol.151, 41–60 (2005). ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCAS Google Scholar
Rath, B.K. & Frank, J. Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: a case study. J. Struct. Biol.145, 84–90 (2004). ArticleCAS Google Scholar
Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy40, 33–53 (1992). ArticleCAS Google Scholar
Bretaudiere, J.P. & Frank, J. Reconstitution of molecule images analysed by correspondence analysis: a tool for structural interpretation. J. Microsc.144, 1–14 (1986). ArticleCAS Google Scholar
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc.146, 113–136 (1987). ArticleCAS Google Scholar
Keatinge-Clay, A.T. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol.14, 898–908 (2007). ArticleCAS Google Scholar
Pasta, S., Witkowski, A., Joshi, A.K. & Smith, S. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase. Chem. Biol.14, 1377–1385 (2007). ArticleCAS Google Scholar
Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W248 (2005). Article Google Scholar
Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCAS Google Scholar
Ploskon, E. et al. A mammalian type I fatty acid synthase acyl carrier protein domain does not sequester acyl chains. J. Biol. Chem.283, 518–528 (2008). ArticleCAS Google Scholar
Volkmann, N. & Hanein, D. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol.125, 176–184 (1999). ArticleCAS Google Scholar
Koski, M.K., Haapalainen, A.M., Hiltunen, J.K. & Glumoff, T. A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2. J. Biol. Chem.279, 24666–24672 (2004). ArticleCAS Google Scholar
Oefner, C., Schulz, H., D'Arcy, A. & Dale, G.E. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr. D Biol. Crystallogr.62, 613–618 (2006). Article Google Scholar
Bunkoczi, G. et al. Mechanism and substrate recognition of human holo ACP synthase. Chem. Biol.14, 1243–1253 (2007). ArticleCAS Google Scholar