Conformational flexibility of metazoan fatty acid synthase enables catalysis (original) (raw)

References

  1. Sul, H.S. & Smith, S. Fatty acid synthesis in eukaryotes. in Biochemistry of Lipids, Lipoproteins and Membranes (ed. Vance, D.E.a.V. J.E.) 155–190 (Elsevier, Amsterdam; Oxford, 2008).
    Chapter Google Scholar
  2. Kuhajda, F.P. et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci. USA 91, 6379–6383 (1994).
    Article CAS Google Scholar
  3. Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).
    Article CAS Google Scholar
  4. Jenni, S. et al. Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316, 254–261 (2007).
    Article CAS Google Scholar
  5. Lomakin, I.B., Xiong, Y. & Steitz, T.A. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell 129, 319–332 (2007).
    Article Google Scholar
  6. Asturias, F.J. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol. 12, 225–232 (2005).
    Article CAS Google Scholar
  7. Maier, T., Jenni, S. & Ban, N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science 311, 1258–1262 (2006).
    Article CAS Google Scholar
  8. Rangan, V.S., Joshi, A.K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 40, 10792–10799 (2001).
    Article CAS Google Scholar
  9. Witkowski, A. et al. Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. J. Biol. Chem. 274, 11557–11563 (1999).
    Article CAS Google Scholar
  10. Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J. & Knight, P.J. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147, 247–258 (2004).
    Article CAS Google Scholar
  11. Joshi, A.K., Witkowski, A., Berman, H.A., Zhang, L. & Smith, S. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase. Biochemistry 44, 4100–4107 (2005).
    Article CAS Google Scholar
  12. Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).
    Article CAS Google Scholar
  13. Keatinge-Clay, A.T. & Stroud, R.M. The structure of a ketoreductase determines the organization of the β-carbon processing enzymes of modular polyketide synthases. Structure 14, 737–748 (2006).
    Article CAS Google Scholar
  14. Smith, S. & Tsai, S.C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 1041–1072 (2007).
    Article CAS Google Scholar
  15. Horton, J.R., Sawada, K., Nishibori, M. & Cheng, X. Structural basis for inhibition of histamine _N_-methyltransferase by diverse drugs. J. Mol. Biol. 353, 334–344 (2005).
    Article CAS Google Scholar
  16. Tang, Y., Kim, C.Y., Mathews, I.I., Cane, D.E. & Khosla, C. The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl. Acad. Sci. USA 103, 11124–11129 (2006).
    Article CAS Google Scholar
  17. Cheng, Y. et al. Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J. Mol. Biol. 355, 1048–1065 (2006).
    Article CAS Google Scholar
  18. Joshi, A.K. & Smith, S. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem. 268, 22508–22513 (1993).
    CAS PubMed Google Scholar
  19. Witkowski, A., Joshi, A.K., Lindqvist, Y. & Smith, S. Conversion of a β-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38, 11643–11650 (1999).
    Article CAS Google Scholar
  20. Tang, Y., Chen, A.Y., Kim, C.Y., Cane, D.E. & Khosla, C. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem. Biol. 14, 931–943 (2007).
    Article CAS Google Scholar
  21. Chen, Z.J. et al. Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. J. Mol. Biol. 379, 830–844 (2008).
    Article CAS Google Scholar
  22. Joshi, A.K., Rangan, V.S., Witkowski, A. & Smith, S. Engineering of an active animal fatty acid synthase dimer with only one competent subunit. Chem. Biol. 10, 169–173 (2003).
    Article CAS Google Scholar
  23. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).
    Article CAS Google Scholar
  24. Smith, S. & Abraham, S. Fatty acid synthase from lactating rat mammary gland. Methods Enzymol. 35, 65–74 (1975).
    Article CAS Google Scholar
  25. Tischendorf, G.W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134, 187–208 (1974).
    Article CAS Google Scholar
  26. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
    Article CAS Google Scholar
  27. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
    Article CAS Google Scholar
  28. Rath, B.K. & Frank, J. Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: a case study. J. Struct. Biol. 145, 84–90 (2004).
    Article CAS Google Scholar
  29. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 33–53 (1992).
    Article CAS Google Scholar
  30. Bretaudiere, J.P. & Frank, J. Reconstitution of molecule images analysed by correspondence analysis: a tool for structural interpretation. J. Microsc. 144, 1–14 (1986).
    Article CAS Google Scholar
  31. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987).
    Article CAS Google Scholar
  32. Keatinge-Clay, A.T. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 14, 898–908 (2007).
    Article CAS Google Scholar
  33. Pasta, S., Witkowski, A., Joshi, A.K. & Smith, S. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase. Chem. Biol. 14, 1377–1385 (2007).
    Article CAS Google Scholar
  34. Soding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
    Article Google Scholar
  35. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
    Article CAS Google Scholar
  36. Ploskon, E. et al. A mammalian type I fatty acid synthase acyl carrier protein domain does not sequester acyl chains. J. Biol. Chem. 283, 518–528 (2008).
    Article CAS Google Scholar
  37. Volkmann, N. & Hanein, D. Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125, 176–184 (1999).
    Article CAS Google Scholar
  38. Koski, M.K., Haapalainen, A.M., Hiltunen, J.K. & Glumoff, T. A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2. J. Biol. Chem. 279, 24666–24672 (2004).
    Article CAS Google Scholar
  39. Oefner, C., Schulz, H., D'Arcy, A. & Dale, G.E. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 62, 613–618 (2006).
    Article Google Scholar
  40. Bunkoczi, G. et al. Mechanism and substrate recognition of human holo ACP synthase. Chem. Biol. 14, 1243–1253 (2007).
    Article CAS Google Scholar

Download references