Rates of in situ transcription and splicing in large human genes (original) (raw)
Rasmussen, E.B. & Lis, J.T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA90, 7923–7927 (1993). ArticleCAS Google Scholar
Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell108, 501–512 (2002). ArticleCAS Google Scholar
Neugebauer, K.M. On the importance of being co-transcriptional. J. Cell Sci.115, 3865–3871 (2002). ArticleCAS Google Scholar
Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol.17, 251–256 (2005). ArticleCAS Google Scholar
Hirose, Y. & Manley, J.L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature395, 93–96 (1998). ArticleCAS Google Scholar
Hirose, Y., Tacke, R. & Manley, J.L. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev.13, 1234–1239 (1999). ArticleCAS Google Scholar
de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell12, 525–532 (2003). ArticleCAS Google Scholar
Cáceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet.18, 186–193 (2002). Article Google Scholar
Core, L.J. & Lis, J.T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science319, 1791–1792 (2008). ArticleCAS Google Scholar
Batsché, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol.13, 22–29 (2006). Article Google Scholar
Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res.26, 5568–5572 (1998). ArticleCAS Google Scholar
Howe, K.J., Kane, C.M. & Ares, M. Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA9, 993–1006 (2003). ArticleCAS Google Scholar
Kornblihtt, A.R. Chromatin, transcript elongation and alternative splicing. Nat. Struct. Mol. Biol.13, 5–7 (2006). ArticleCAS Google Scholar
Tennyson, C.N., Klamut, H.J. & Worton, R.G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet.9, 184–190 (1995). ArticleCAS Google Scholar
O'Brien, T. & Lis, J.T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol.13, 3456–3463 (1993). ArticleCAS Google Scholar
Femino, A.M., Fogarty, K., Lifshitz, L.M., Carrington, W. & Singer, R.H. Visualization of single molecules of mRNA in situ. Methods Enzymol.361, 245–304 (2003). ArticleCAS Google Scholar
Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol.14, 796–806 (2007). ArticleCAS Google Scholar
Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol.179, 291–304 (2007). ArticleCAS Google Scholar
Kessler, O., Jiang, Y. & Chasin, L.A. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol. Cell. Biol.13, 6211–6222 (1993). ArticleCAS Google Scholar
Audibert, A., Weil, D. & Dautry, F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol.22, 6706–6718 (2002). ArticleCAS Google Scholar
Das, R. et al. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev.20, 1100–1109 (2006). ArticleCAS Google Scholar
Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol.13, 815–822 (2006). ArticleCAS Google Scholar
Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA10, 1489–1498 (2004). ArticleCAS Google Scholar
König, H., Matter, N., Bader, R., Thiele, W. & Muller, F. Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell131, 718–729 (2007). Article Google Scholar
Matera, A.G. & Ward, D.C. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol.121, 715–727 (1993). ArticleCAS Google Scholar
Pessa, H.K. et al. Minor spliceosome components are predominantly localized in the nucleus. Proc. Natl. Acad. Sci. USA105, 8655–8660 (2008). ArticleCAS Google Scholar
Friend, K., Kolev, N.G., Shu, M.D. & Steitz, J.A. Minor-class splicing occurs in the nucleus of the Xenopus oocyte. RNA14, 1459–1462 (2008). ArticleCAS Google Scholar
König, H. & Muller, F. Minor splicing: nuclear dogma still in question. Proc. Natl. Acad. Sci. USA105, E37 (2008). Article Google Scholar
Steitz, J.A. et al. Where in the cell is the minor spliceosome? Proc. Natl. Acad. Sci. USA105, 8485–8486 (2008). ArticleCAS Google Scholar
Marshall, N.F. & Price, D.H. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol.12, 2078–2090 (1992). ArticleCAS Google Scholar
Price, D.H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol.20, 2629–2634 (2000). ArticleCAS Google Scholar
Cheng, B. & Price, D.H. Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J. Biol. Chem.282, 21901–21912 (2007). ArticleCAS Google Scholar
Chodosh, L.A., Fire, A., Samuels, M. & Sharp, P.A. 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem.264, 2250–2257 (1989). CASPubMed Google Scholar
Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev.20, 601–612 (2006). ArticleCAS Google Scholar
Capranico, G. et al. The effects of camptothecin on RNA polymerase II transcription: roles of DNA topoisomerase I. Biochimie89, 482–489 (2007). ArticleCAS Google Scholar
Mondal, N. & Parvin, J.D. DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates. Nature413, 435–438 (2001). ArticleCAS Google Scholar
Khobta, A. et al. Early effects of topoisomerase I inhibition on RNA polymerase II along transcribed genes in human cells. J. Mol. Biol.357, 127–138 (2006). ArticleCAS Google Scholar
Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H. Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA95, 15623–15628 (1998). ArticleCAS Google Scholar
Patel, A.A., McCarthy, M. & Steitz, J.A. The splicing of U12-type introns can be a rate-limiting step in gene expression. EMBO J.21, 3804–3815 (2002). ArticleCAS Google Scholar
Ucker, D.S. & Yamamoto, K.R. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J. Biol. Chem.259, 7416–7420 (1984). CASPubMed Google Scholar
Burnette, J.M., Miyamoto-Sato, E., Schaub, M.A., Conklin, J. & Lopez, A.J. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics170, 661–674 (2005). ArticleCAS Google Scholar
Fong, N., Bird, G., Vigneron, M. & Bentley, D.L. A 10 residue motif at the C-terminus of the RNA Pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J.22, 4274–4282 (2003). ArticleCAS Google Scholar
Zeng, C. & Berget, S.M. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol. Cell. Biol.20, 8290–8301 (2000). ArticleCAS Google Scholar
Hirose, Y. & Ohkuma, Y. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J. Biochem.141, 601–608 (2007). ArticleCAS Google Scholar
Dye, M.J., Gromak, N. & Proudfoot, N.J. Exon tethering in transcription by RNA polymerase II. Mol. Cell21, 849–859 (2006). ArticleCAS Google Scholar
Rosonina, E. & Blencowe, B.J. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA10, 581–589 (2004). ArticleCAS Google Scholar
West, A.B. et al. N-myc regulates parkin expression. J. Biol. Chem.279, 28896–28902 (2004). ArticleCAS Google Scholar