Structural aspects of messenger RNA reading frame maintenance by the ribosome (original) (raw)
Kurland, C.G., Hughes, D. & Ehrenberg, M. Limitation of translation accuracy. in Escherichia coli and Salmonella. Cellular and Molecular Biology (ed. Neidhardt, F.C.) 979–1004 (American Society for Microbiology, Washington, DC, 1996).
Jorgensen, F. & Kurland, C.G. Processivity errors of gene expression in Escherichia coli. J. Mol. Biol.215, 511–521 (1990). ArticleCAS Google Scholar
Bouadloun, F., Srichaiyo, T., Isaksson, L.A. & Bjork, G.R. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J. Bacteriol.166, 1022–1027 (1986). ArticleCAS Google Scholar
Konevega, A.L., Soboleva, N.G., Makhno, V.I., Peshekhonov, A.V. & Katunin, V.I. The effect of modification of tRNA nucleotide-37 on the tRNA interaction with the P- and A-site of the 70S ribosome Escherichia coli. Mol. Biol. (Mosk.)40, 669–683 (2006). ArticleCAS Google Scholar
Urbonavicius, J., Qian, Q., Durand, J.M., Hagervall, T.G. & Bjork, G.R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J.20, 4863–4873 (2001). ArticleCAS Google Scholar
Gustilo, E.M., Vendeix, F.A. & Agris, P.F. tRNA's modifications bring order to gene expression. Curr. Opin. Microbiol.11, 134–140 (2008). ArticleCAS Google Scholar
Rozenski, J., Crain, P.F. & McCloskey, J.A. The RNA modification database: 1999 update. Nucleic Acids Res.27, 196–197 (1999). ArticleCAS Google Scholar
Murphy, F.V. IV, Ramakrishnan, V., Malkiewicz, A. & Agris,, P.F. The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat. Struct. Mol. Biol.11, 1186–1191 (2004). ArticleCAS Google Scholar
Weixlbaumer, A. et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat. Struct. Mol. Biol.14, 498–502 (2007). ArticleCAS Google Scholar
Vacher, J., Grosjean, H., Houssier, C. & Buckingham, R.H. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J. Mol. Biol.177, 329–342 (1984). ArticleCAS Google Scholar
Yanofsky, C. Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J. Mol. Biol.113, 663–677 (1977). ArticleCAS Google Scholar
Petrullo, L.A., Gallagher, P.J. & Elseviers, D. The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol. Gen. Genet.190, 289–294 (1983). ArticleCAS Google Scholar
Wilson, R.K. & Roe, B.A. Presence of the hypermodified nucleotide N6-(δ 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc. Natl. Acad. Sci. USA86, 409–413 (1989). ArticleCAS Google Scholar
Urbonavicius, J. et al. Transfer RNA modifications that alter +1 frameshifting in general fail to affect −1 frameshifting. RNA9, 760–768 (2003). ArticleCAS Google Scholar
Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science292, 883–896 (2001). ArticleCAS Google Scholar
Korostelev, A., Trakhanov, S., Laurberg, M. & Noller, H.F. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell126, 1065–1077 (2006). ArticleCAS Google Scholar
Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science313, 1935–1942 (2006). ArticleCAS Google Scholar
Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science292, 897–902 (2001). ArticleCAS Google Scholar
Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell106, 233–241 (2001). ArticleCAS Google Scholar
Jenner, L. et al. Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science308, 120–123 (2005). ArticleCAS Google Scholar
Yusupova, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature444, 391–394 (2006). ArticleCAS Google Scholar
Gogia, Z.V., Yusupov, M.M. & Spirina, T.N. Structure of Thermus thermophilus ribosomes. Method of isolation and purification of the ribosomes. Molekul. Biol.20, 519–526 (1986). Google Scholar
Jukes, T.H. Possibilities for the evolution of the genetic code from a preceding form. Nature246, 22–26 (1973). ArticleCAS Google Scholar
Jenner, L., Rees, B., Yusupov, M. & Yusupova, G. Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep.8, 846–850 (2007). ArticleCAS Google Scholar
Lill, R. & Wintermeyer, W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J. Mol. Biol.196, 137–148 (1987). ArticleCAS Google Scholar
Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA71, 1342–1346 (1974). ArticleCAS Google Scholar
Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol.14, 733–737 (2007). ArticleCAS Google Scholar
Weixlbaumer, A. et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science322, 953–956 (2008). ArticleCAS Google Scholar
Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature454, 852–857 (2008). ArticleCAS Google Scholar
Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA105, 19684–19689 (2008). ArticleCAS Google Scholar
Schurr, T., Nadir, E. & Margalit, H. Identification and characterization of E. coli ribosomal binding sites by free energy computation. Nucleic Acids Res.21, 4019–4023 (1993). ArticleCAS Google Scholar
Geigenmuller, U. & Nierhaus, K.H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J.9, 4527–4533 (1990). ArticleCAS Google Scholar
Menichi, B. & Heyman, T. Study of tyrosine transfer ribonucleic acid modification in relation to sporulation in Bacillus subtilis. J. Bacteriol.127, 268–280 (1976). CASPubMedPubMed Central Google Scholar
Hoburg, A., Aschhoff, H.J., Kersten, H., Manderschied, U. & Gassen, H.G. Function of modified nucleosides 7-methylguanosine, ribothymidine, and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic transfer ribonucleic acid. J. Bacteriol.140, 408–414 (1979). CASPubMedPubMed Central Google Scholar
Klein, D.J., Moore, P.B. & Steitz, T.A. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA10, 1366–1379 (2004). ArticleCAS Google Scholar
Pyle, A.M. Metal ions in the structure and function of RNA. J. Biol. Inorg. Chem.7, 679–690 (2002). ArticleCAS Google Scholar
Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell111, 721–732 (2002). ArticleCAS Google Scholar
Valle, M. et al. Locking and unlocking of ribosomal motions. Cell114, 123–134 (2003). ArticleCAS Google Scholar
Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J.23, 1008–1019 (2004). ArticleCAS Google Scholar
Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science325, 1014–1017 (2009). ArticleCAS Google Scholar
Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr.21, 67–72 (1988). ArticleCAS Google Scholar
Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr.21, 916–924 (1988). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc.2, 2728–2733 (2007). ArticleCAS Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar