Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989). ArticleCASPubMed Google Scholar
Chan, J. et al. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA86, 2453–2457 (1989). ArticleCASPubMedPubMed Central Google Scholar
Fratti, R.A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA100, 5437–5442 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vergne, I. et al. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell15, 751–760 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544 (1998). ArticleCASPubMed Google Scholar
Sutcliffe, I.C. & Harrington, D.J. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev.28, 645–659 (2004). ArticleCASPubMed Google Scholar
Bigi, F. et al. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis . Microbes Infect.6, 182–187 (2004). ArticleCASPubMed Google Scholar
Rengarajan, J., Bloom, B.R. & Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA102, 8327–8332 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sassetti, C.M. & Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA100, 12989–12994 (2003). ArticleCASPubMedPubMed Central Google Scholar
Farrow, M.F. & Rubin, E.J. Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein. J. Bacteriol.190, 1783–1791 (2008). ArticleCASPubMed Google Scholar
Sulzenbacher, G. et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis . EMBO J.25, 1436–1444 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jones, B.W. et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukoc. Biol.69, 1036–1044 (2001). CASPubMed Google Scholar
Gilleron, M., Quesniaux, V.F. & Puzo, G. Acylation state of the phosphatidyl inositol hexamannosides from Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv and its implication in TLR response. J. Biol. Chem.278, 29880–29889 (2003). ArticleCASPubMed Google Scholar
Elass, E. et al. Mycobacterial lipomannan induces matrix metalloproteinase-9 expression in human macrophagic cells through a toll-like receptor 1 (TLR1)/TLR2- and CD14-dependent mechanism. Infect. Immun.73, 7064–7068 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tapping, R.I. & Tobias, P.S. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res.9, 264–268 (2003). ArticleCASPubMed Google Scholar
Bhatt, K. & Salgame, P. Host innate immune response to Mycobacterium tuberculosis . J. Clin. Immunol.27, 347–362 (2007). ArticleCASPubMed Google Scholar
Pai, R.K., Convery, M., Hamilton, T.A., Boom, W.H. & Harding, C.V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol.171, 175–184 (2003). ArticleCASPubMed Google Scholar
Noss, E.H. et al. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19 kD lipoprotein of Mycobacterium tuberculosis . J. Immunol.167, 910–918 (2001). ArticleCASPubMed Google Scholar
Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science285, 732–736 (1999). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol.169, 10–14 (2002). ArticleCASPubMed Google Scholar
Nigou, J. et al. Mannan chain length controls lipoglycans signaling via and binding to TLR2. J. Immunol.180, 6696–6702 (2008). ArticleCASPubMed Google Scholar
Pecora, N.D., Gehring, A.J., Canaday, D.H., Boom, W.H. & Harding, C.V. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol.177, 422–429 (2006). ArticleCASPubMed Google Scholar
Gehring, A.J., Dobos, K.M., Belisle, J.T., Harding, C.V. & Boom, W.H. Mycobacterium tuberculosis LprG (Rv1411c): A novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol.173, 2660–2668 (2004). ArticleCASPubMed Google Scholar
Jung, S.B. et al. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect. Immun.74, 2686–2696 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell130, 1071–1082 (2007). ArticleCASPubMed Google Scholar
Rezwan, M., Grau, T., Tschumi, A. & Sander, P. Lipoprotein synthesis in mycobacteria. Microbiology153, 652–658 (2007). ArticleCASPubMed Google Scholar
Nigou, J., Gilleron, M. & Puzo, G. Lipoarabinomannans: characterization of the multiacylated forms of the phosphatidyl-myo-inositol anchor by NMR spectroscopy. Biochem. J.337, 453–460 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bigi, F. et al. The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis . Microbiology146, 1011–1018 (2000). ArticleCASPubMed Google Scholar
Gilleron, M., Nigou, J., Nicolle, D., Quesniaux, V. & Puzo, G. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2. Chem. Biol.13, 39–47 (2006). ArticleCASPubMed Google Scholar
Kang, J.Y. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity31, 873–884 (2009). ArticleCASPubMed Google Scholar
Berg, S., Kaur, D., Jackson, M. & Brennan, P.J. The glycosyltransferases of _Mycobacterium tuberculosis_—roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology17, 35R–56R (2007). ArticleCAS Google Scholar
Finberg, R.W., Re, F., Popova, L., Golenbock, D.T. & Kurt-Jones, E.A. Cell activation by Toll-like receptors: role of LBP and CD14. J. Endotoxin Res.10, 413–418 (2004). ArticleCASPubMed Google Scholar
Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol.6, 565–570 (2005). ArticleCASPubMed Google Scholar
Sklar, M.D., Tereba, A., Chen, B.D. & Walker, W.S. Transformation of mouse bone marrow cells by transfection with a human oncogene related to c-myc is associated with the endogenous production of macrophage colony stimulating factor 1. J. Cell. Physiol.125, 403–412 (1985). ArticleCASPubMed Google Scholar
Flo, T.H. et al. Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J. Biol. Chem.277, 35489–35495 (2002). ArticleCASPubMed Google Scholar
Latz, E. et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2–CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem.277, 47834–47843 (2002). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol.364, 215–230 (2007). CASPubMed Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCASPubMed Google Scholar
Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.58, 1948–1954 (2002). ArticlePubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). ArticleCASPubMed Google Scholar
Dundas, J. et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res.34, W116–8 (2006). ArticleCASPubMedPubMed Central Google Scholar