Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation (original) (raw)

Nature Structural & Molecular Biology volume 18, pages 392–394 (2011)Cite this article

Subjects

Abstract

X-ray and magnetic resonance approaches, though central to studies of G protein–coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state 2H NMR relaxation elucidates picosecond-to-nanosecond–timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I–meta II equilibrium on the microsecond-to-millisecond timescale.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 print issues and online access

$209.00 per year

only $17.42 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kobilka, B. & Schertler, G.F.X. Trends Pharmacol. Sci. 29, 79–83 (2008).
    Article CAS Google Scholar
  2. Ahuja, S. & Smith, S.O. Trends Pharmacol. Sci. 30, 494–502 (2009).
    Article CAS Google Scholar
  3. Okada, T. et al. J. Mol. Biol. 342, 571–583 (2004).
    Article CAS Google Scholar
  4. Ridge, K.D. & Palczewski, K. J. Biol. Chem. 282, 9297–9301 (2007).
    Article CAS Google Scholar
  5. Brown, M.F. J. Chem. Phys. 77, 1576–1599 (1982).
    Article CAS Google Scholar
  6. Altenbach, C., Kusnetzow, A.K., Ernst, O.P., Hofmann, K.P. & Hubbell, W.L. Proc. Natl. Acad. Sci. USA 105, 7439–7444 (2008).
    Article CAS Google Scholar
  7. Ahuja, S. et al. J. Biol. Chem. 284, 10190–10201 (2009).
    Article CAS Google Scholar
  8. Frauenfelder, H. et al. Proc. Natl. Acad. Sci. USA 106, 5129–5134 (2009).
    Article CAS Google Scholar
  9. Vogel, R. et al. Biochemistry 45, 1640–1652 (2006).
    Article CAS Google Scholar
  10. Knierim, B., Hofmann, K.P., Ernst, O.P. & Hubbell, W.L. Proc. Natl. Acad. Sci. USA 104, 20290–20295 (2007).
    Article CAS Google Scholar
  11. Mahalingam, M., Martínez-Mayorga, K., Brown, M.F. & Vogel, R. Proc. Natl. Acad. Sci. USA 105, 17795–17800 (2008).
    Article CAS Google Scholar
  12. Struts, A.V. et al. J. Mol. Biol. 372, 50–66 (2007).
    Article CAS Google Scholar
  13. Brown, M.F. Chem. Phys. Lipids 73, 159–180 (1994).
    Article CAS Google Scholar
  14. Verdegem, P.J.E., Bovee-Geurts, P.H.M., de Grip, W.J., Lugtenburg, J. & de Groot, H.J.M. Biochemistry 38, 11316–11324 (1999).
    Article CAS Google Scholar
  15. Spooner, P.J.R. et al. Biochemistry 42, 13371–13378 (2003).
    Article CAS Google Scholar
  16. Kukura, P., McCamant, D.W., Yoon, S., Wandschneider, D.B. & Mathies, R.A. Science 310, 1006–1009 (2005).
    Article CAS Google Scholar
  17. Copié, V. et al. Biochemistry 33, 3280–3286 (1994).
    Article Google Scholar
  18. Borhan, B., Souto, M.L., Imai, H., Shichida, Y. & Nakanishi, K. Science 288, 2209–2212 (2000).
    Article CAS Google Scholar
  19. Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.-W. & Ernst, O.P. Nature 454, 183–188 (2008).
    Article CAS Google Scholar
  20. Ernst, O.P., Gramse, V., Kolbe, M., Hofmann, K.P. & Heck, M. Proc. Natl. Acad. Sci. USA 104, 10859–10864 (2007).
    Article CAS Google Scholar

Download references

Acknowledgements

We thank T.A. Cross, K.P. Hofmann, M. Hong, W.L. Hubbell, L.E. Kay, S.O. Smith and R.W. Pastor for discussions. Retinal was provided by K. Tanaka, S. Krane and K. Nakanishi (Columbia University). Financial support from the US National Institutes of Health (EY012049 and EY018891) is gratefully acknowledged.

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Arizona, Tucson, Arizona, USA
    Andrey V Struts & Michael F Brown
  2. Department of Physics, St. Petersburg State University, St. Petersburg, Russia
    Andrey V Struts
  3. Département de Chimie, École Normale Supérieure, Paris, France
    Gilmar F J Salgado
  4. Torrey Pines Institute for Molecular Studies, Fort Pierce, Florida, USA
    Karina Martínez-Mayorga
  5. Department of Physics, University of Arizona, Tucson, Arizona, USA
    Michael F Brown

Authors

  1. Andrey V Struts
    You can also search for this author inPubMed Google Scholar
  2. Gilmar F J Salgado
    You can also search for this author inPubMed Google Scholar
  3. Karina Martínez-Mayorga
    You can also search for this author inPubMed Google Scholar
  4. Michael F Brown
    You can also search for this author inPubMed Google Scholar

Contributions

A.V.S. and M.F.B. designed the research. A.V.S. and G.F.J.S. performed the experiments. A.V.S., G.F.J.S., and K.M.-M. analyzed the data. A.V.S. and M.F.B. wrote the paper.

Corresponding author

Correspondence toMichael F Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Struts, A., Salgado, G., Martínez-Mayorga, K. et al. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation.Nat Struct Mol Biol 18, 392–394 (2011). https://doi.org/10.1038/nsmb.1982

Download citation

This article is cited by