Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins (original) (raw)
References
Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell33, 1–13 (2009). ArticleCAS Google Scholar
Siomi, M.C., Mannen, T. & Siomi, H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev.24, 636–646 (2010). ArticleCAS Google Scholar
Boisvert, F.M., Cote, J., Boulanger, M.C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics2, 1319–1330 (2003). ArticleCAS Google Scholar
Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. & Luhrmann, R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA7, 1531–1542 (2001). ArticleCAS Google Scholar
Friesen, W.J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell7, 1111–1117 (2001). ArticleCAS Google Scholar
Côté, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem.280, 28476–28483 (2005). Article Google Scholar
Friberg, A., Corsini, L., Mourao, A. & Sattler, M. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J. Mol. Biol.387, 921–934 (2009). ArticleCAS Google Scholar
Bühler, D., Raker, V., Lührmann, R. & Fischer, U. Essential role for the Tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet.8, 2351–2357 (1999). Article Google Scholar
Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell95, 615–624 (1998). ArticleCAS Google Scholar
Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science298, 1775–1779 (2002). ArticleCAS Google Scholar
Meister, G. et al. SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO J.20, 2304–2314 (2001). ArticleCAS Google Scholar
Rappsilber, J., Ajuh, P., Lamond, A.I. & Mann, M. SPF30 is an essential human splicing factor required for assembly of the U4/U5/U6 tri-small nuclear ribonucleoprotein into the spliceosome. J. Biol. Chem.276, 31142–31150 (2001). ArticleCAS Google Scholar
Paushkin, S., Gubitz, A.K., Massenet, S. & Dreyfuss, G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell Biol.14, 305–312 (2002). ArticleCAS Google Scholar
Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J.21, 5853–5863 (2002). ArticleCAS Google Scholar
Selenko, P. et al. SMN Tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol.8, 27–31 (2001). ArticleCAS Google Scholar
Sprangers, R., Groves, M.R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol.327, 507–520 (2003). ArticleCAS Google Scholar
Renvoisé, B. et al. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J. Cell Sci.119, 680–692 (2006). Article Google Scholar
Vagin, V.V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev.23, 1749–1762 (2009). ArticleCAS Google Scholar
Kirino, Y. et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol.11, 652–658 (2009). ArticleCAS Google Scholar
Nishida, K.M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J.28, 3820–3831 (2009). ArticleCAS Google Scholar
Liu, H. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev.24, 1876–1881 (2010). ArticleCAS Google Scholar
Liu, K. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl. Acad. Sci. USA107, 18398–18403 (2010). ArticleCAS Google Scholar
Botuyan, M.V. et al. Structural basis for the methylation state–specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell127, 1361–1373 (2006). ArticleCAS Google Scholar
Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science312, 748–751 (2006). ArticleCAS Google Scholar
Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol.14, 1025–1040 (2007). ArticleCAS Google Scholar
Mecozzi, S., West, A.P. Jr. & Dougherty, D.A. Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA93, 10566–10571 (1996). ArticleCAS Google Scholar
Gallivan, J.P. & Dougherty, D.A. Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA96, 9459–9464 (1999). ArticleCAS Google Scholar
Chen, C. et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl. Acad. Sci. USA106, 20336–20341 (2009). ArticleCAS Google Scholar
Chari, A., Paknia, E. & Fischer, U. The role of RNP biogenesis in spinal muscular atrophy. Curr. Opin. Cell Biol.21, 387–393 (2009). ArticleCAS Google Scholar
Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl. Acad. Sci. USA96, 11167–11172 (1999). ArticleCAS Google Scholar
Eggert, C., Chari, A., Laggerbauer, B. & Fischer, U. Spinal muscular atrophy: the RNP connection. Trends Mol. Med.12, 113–121 (2006). ArticleCAS Google Scholar
Raker, V.A., Plessel, G. & Lührmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J.15, 2256–2269 (1996). ArticleCAS Google Scholar
Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell135, 497–509 (2008). ArticleCAS Google Scholar
Zhang, R. et al. Structure of a key intermediate of the SMN complex reveals gemin2′s crucial function in snRNP assembly. Cell146, 384–395 (2011). ArticleCAS Google Scholar
Friesen, W.J. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol.21, 8289–8300 (2001). ArticleCAS Google Scholar
Kessler, H. Detection of hindered rotation and inversion by NMR spectroscopy. Angew. Chem. Int. Ed. Engl.9, 219–235 (1970). ArticleCAS Google Scholar
Cheng, D., Cote, J., Shaaban, S. & Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell25, 71–83 (2007). Article Google Scholar
Sims, R.J. et al. The C-terminal domain of RNA polymerase IIiIs modified by site-specific methylation. Science332, 99–103 (2011). ArticleCAS Google Scholar
Kirino, Y. et al. Arginine methylation of Vasa protein is conserved across phyla. J. Biol. Chem.285, 8148–8154 (2010). ArticleCAS Google Scholar
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR6, 277–293 (1995). ArticleCAS Google Scholar
Sattler, M., Schleucher, J.R. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc.34, 93–158 (1999). ArticleCAS Google Scholar
Breeze, A.L. Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog. Nucl. Magn. Reson. Spectrosc.36, 323–372 (2000). ArticleCAS Google Scholar
Neri, D., Szyperski, T., Otting, G., Senn, H. & Wuthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry28, 7510–7516 (1989). ArticleCAS Google Scholar
Grzesiek, S. & Bax, A. A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins. J. Biomol. NMR9, 207–211 (1997). ArticleCAS Google Scholar
Hu, J.S. & Bax, A. χ1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNCγ couplings in isotopically enriched proteins. J. Biomol. NMR9, 323–328 (1997). ArticleCAS Google Scholar
Güntert, P. Automated structure determination from NMR spectra. Eur. Biophys. J.38, 129–143 (2009). Article Google Scholar
Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR44, 213–223 (2009). ArticleCAS Google Scholar
Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins50, 496–506 (2003). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). Article Google Scholar
Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr.60, 1355–1363 (2004). Article Google Scholar
Kleywegt, G.J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr.63, 94–100 (2007). ArticleCAS Google Scholar
Becke, A. Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys.98, 5648–5652 (1993). ArticleCAS Google Scholar
Lee, C., Yang, W. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter.37, 785–789 (1988). ArticleCAS Google Scholar
Gill, S.J. Thermodynamics of ligand-binding to proteins. Pure Appl. Chem.61, 1009–1020 (1989). ArticleCAS Google Scholar
Capaldi, S. et al. The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule. J. Mol. Biol.385, 99–116 (2009). ArticleCAS Google Scholar
Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).