Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins (original) (raw)

References

  1. Bedford, M.T. & Clarke, S.G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).
    Article CAS Google Scholar
  2. Siomi, M.C., Mannen, T. & Siomi, H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 24, 636–646 (2010).
    Article CAS Google Scholar
  3. Boisvert, F.M., Cote, J., Boulanger, M.C. & Richard, S. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2, 1319–1330 (2003).
    Article CAS Google Scholar
  4. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. & Luhrmann, R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542 (2001).
    Article CAS Google Scholar
  5. Friesen, W.J., Massenet, S., Paushkin, S., Wyce, A. & Dreyfuss, G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117 (2001).
    Article CAS Google Scholar
  6. Côté, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476–28483 (2005).
    Article Google Scholar
  7. Friberg, A., Corsini, L., Mourao, A. & Sattler, M. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J. Mol. Biol. 387, 921–934 (2009).
    Article CAS Google Scholar
  8. Bühler, D., Raker, V., Lührmann, R. & Fischer, U. Essential role for the Tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum. Mol. Genet. 8, 2351–2357 (1999).
    Article Google Scholar
  9. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1998).
    Article CAS Google Scholar
  10. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).
    Article CAS Google Scholar
  11. Meister, G. et al. SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome. EMBO J. 20, 2304–2314 (2001).
    Article CAS Google Scholar
  12. Rappsilber, J., Ajuh, P., Lamond, A.I. & Mann, M. SPF30 is an essential human splicing factor required for assembly of the U4/U5/U6 tri-small nuclear ribonucleoprotein into the spliceosome. J. Biol. Chem. 276, 31142–31150 (2001).
    Article CAS Google Scholar
  13. Paushkin, S., Gubitz, A.K., Massenet, S. & Dreyfuss, G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell Biol. 14, 305–312 (2002).
    Article CAS Google Scholar
  14. Meister, G. & Fischer, U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 21, 5853–5863 (2002).
    Article CAS Google Scholar
  15. Selenko, P. et al. SMN Tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8, 27–31 (2001).
    Article CAS Google Scholar
  16. Sprangers, R., Groves, M.R., Sinning, I. & Sattler, M. High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327, 507–520 (2003).
    Article CAS Google Scholar
  17. Hebert, M.D., Shpargel, K.B., Ospina, J.K., Tucker, K.E. & Matera, A.G. Coilin methylation regulates nuclear body formation. Dev. Cell 3, 329–337 (2002).
    Article CAS Google Scholar
  18. Renvoisé, B. et al. Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J. Cell Sci. 119, 680–692 (2006).
    Article Google Scholar
  19. Vagin, V.V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23, 1749–1762 (2009).
    Article CAS Google Scholar
  20. Kirino, Y. et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol. 11, 652–658 (2009).
    Article CAS Google Scholar
  21. Nishida, K.M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820–3831 (2009).
    Article CAS Google Scholar
  22. Liu, H. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev. 24, 1876–1881 (2010).
    Article CAS Google Scholar
  23. Liu, K. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl. Acad. Sci. USA 107, 18398–18403 (2010).
    Article CAS Google Scholar
  24. Botuyan, M.V. et al. Structural basis for the methylation state–specific recognition of histone H4–K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).
    Article CAS Google Scholar
  25. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double Tudor domain of JMJD2A. Science 312, 748–751 (2006).
    Article CAS Google Scholar
  26. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).
    Article CAS Google Scholar
  27. Mecozzi, S., West, A.P. Jr. & Dougherty, D.A. Cation-π interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA 93, 10566–10571 (1996).
    Article CAS Google Scholar
  28. Gallivan, J.P. & Dougherty, D.A. Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).
    Article CAS Google Scholar
  29. Chen, C. et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl. Acad. Sci. USA 106, 20336–20341 (2009).
    Article CAS Google Scholar
  30. Chari, A., Paknia, E. & Fischer, U. The role of RNP biogenesis in spinal muscular atrophy. Curr. Opin. Cell Biol. 21, 387–393 (2009).
    Article CAS Google Scholar
  31. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl. Acad. Sci. USA 96, 11167–11172 (1999).
    Article CAS Google Scholar
  32. Eggert, C., Chari, A., Laggerbauer, B. & Fischer, U. Spinal muscular atrophy: the RNP connection. Trends Mol. Med. 12, 113–121 (2006).
    Article CAS Google Scholar
  33. Raker, V.A., Plessel, G. & Lührmann, R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15, 2256–2269 (1996).
    Article CAS Google Scholar
  34. Chari, A. et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497–509 (2008).
    Article CAS Google Scholar
  35. Zhang, R. et al. Structure of a key intermediate of the SMN complex reveals gemin2′s crucial function in snRNP assembly. Cell 146, 384–395 (2011).
    Article CAS Google Scholar
  36. Friesen, W.J. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell. Biol. 21, 8289–8300 (2001).
    Article CAS Google Scholar
  37. Kessler, H. Detection of hindered rotation and inversion by NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 9, 219–235 (1970).
    Article CAS Google Scholar
  38. Cheng, D., Cote, J., Shaaban, S. & Bedford, M.T. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell 25, 71–83 (2007).
    Article Google Scholar
  39. Sims, R.J. et al. The C-terminal domain of RNA polymerase IIiIs modified by site-specific methylation. Science 332, 99–103 (2011).
    Article CAS Google Scholar
  40. Kirino, Y. et al. Arginine methylation of Vasa protein is conserved across phyla. J. Biol. Chem. 285, 8148–8154 (2010).
    Article CAS Google Scholar
  41. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
    Article CAS Google Scholar
  42. Sattler, M., Schleucher, J.R. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).
    Article CAS Google Scholar
  43. Breeze, A.L. Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog. Nucl. Magn. Reson. Spectrosc. 36, 323–372 (2000).
    Article CAS Google Scholar
  44. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wuthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).
    Article CAS Google Scholar
  45. Grzesiek, S. & Bax, A. A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins. J. Biomol. NMR 9, 207–211 (1997).
    Article CAS Google Scholar
  46. Hu, J.S. & Bax, A. χ1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNCγ couplings in isotopically enriched proteins. J. Biomol. NMR 9, 323–328 (1997).
    Article CAS Google Scholar
  47. Güntert, P. Automated structure determination from NMR spectra. Eur. Biophys. J. 38, 129–143 (2009).
    Article Google Scholar
  48. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).
    Article CAS Google Scholar
  49. Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).
    Article CAS Google Scholar
  50. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article Google Scholar
  51. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).
    Article Google Scholar
  52. Kleywegt, G.J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63, 94–100 (2007).
    Article CAS Google Scholar
  53. Becke, A. Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
    Article CAS Google Scholar
  54. Lee, C., Yang, W. & Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 37, 785–789 (1988).
    Article CAS Google Scholar
  55. Gill, S.J. Thermodynamics of ligand-binding to proteins. Pure Appl. Chem. 61, 1009–1020 (1989).
    Article CAS Google Scholar
  56. Capaldi, S. et al. The X-ray structure of zebrafish (Danio rerio) ileal bile acid-binding protein reveals the presence of binding sites on the surface of the protein molecule. J. Mol. Biol. 385, 99–116 (2009).
    Article CAS Google Scholar
  57. Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, 2007).

Download references