HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism (original) (raw)
Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science256, 1783–1790 (1992). ArticleCASPubMed Google Scholar
Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. USA90, 6320–6324 (1993). ArticleCASPubMedPubMed Central Google Scholar
Huang, H., Chopra, R., Verdine, G.L. & Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science282, 1669–1675 (1998). ArticleCASPubMed Google Scholar
Ren, J. & Stammers, D.K. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus Res.134, 157–170 (2008). ArticleCASPubMed Google Scholar
Das, K. et al. Roles of conformational and positional adaptability in structure-based design of TMC125–R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.47, 2550–2560 (2004). ArticleCASPubMed Google Scholar
Steitz, T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem.274, 17395–17398 (1999). ArticleCASPubMed Google Scholar
Sarafianos, S.G. et al. Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Chem. Biol.6, R137–R146 (1999). ArticleCASPubMed Google Scholar
Rodgers, D.W. et al. The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA92, 1222–1226 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hsiou, Y. et al. Structure of unliganded HIV-1 reverse transcriptase at 2.7 Å resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure4, 853–860 (1996). ArticleCASPubMed Google Scholar
Rittinger, K., Divita, G. & Goody, R.S. Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc. Natl. Acad. Sci. USA92, 8046–8049 (1995). ArticleCASPubMedPubMed Central Google Scholar
Spence, R.A., Kati, W.M., Anderson, K.S. & Johnson, K.A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science267, 988–993 (1995). ArticleCASPubMedPubMed Central Google Scholar
Sluis-Cremer, N., Temiz, N.A. & Bahar, I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr. HIV Res.2, 323–332 (2004). ArticleCASPubMedPubMed Central Google Scholar
Geitmann, M., Unge, T. & Danielson, U.H. Biosensor-based kinetic characterization of the interaction between HIV-1 reverse transcriptase and non-nucleoside inhibitors. J. Med. Chem.49, 2367–2374 (2006). ArticleCASPubMed Google Scholar
Tachedjian, G., Orlova, M., Sarafianos, S.G., Arnold, E. & Goff, S.P. Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA98, 7188–7193 (2001). ArticleCASPubMedPubMed Central Google Scholar
Liu, S., Abbondanzieri, E.A., Rausch, J.W., Le Grice, S.F. & Zhuang, X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science322, 1092–1097 (2008). ArticleCASPubMedPubMed Central Google Scholar
Peletskaya, E.N., Kogon, A.A., Tuske, S., Arnold, E. & Hughes, S.H. Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. J. Virol.78, 3387–3397 (2004). ArticleCASPubMedPubMed Central Google Scholar
Xia, Q., Radzio, J., Anderson, K.S. & Sluis-Cremer, N. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci.16, 1728–1737 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ren, J. et al. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat. Struct. Biol.2, 293–302 (1995). ArticleCASPubMed Google Scholar
Das, K. et al. Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J. Mol. Biol.264, 1085–1100 (1996). ArticleCASPubMed Google Scholar
Meyer, P.R., Matsuura, S.E., Mian, A.M., So, A.G. & Scott, W.A. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol. Cell4, 35–43 (1999). ArticleCASPubMed Google Scholar
Arion, D., Kaushik, N., McCormick, S., Borkow, G. & Parniak, M.A. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry37, 15908–15917 (1998). ArticleCASPubMed Google Scholar
Gu, Z., Quan, Y., Li, Z., Arts, E.J. & Wainberg, M.A. Effects of non-nucleoside inhibitors of human immunodeficiency virus type 1 in cell-free recombinant reverse transcriptase assays. J. Biol. Chem.270, 31046–31051 (1995). ArticleCASPubMed Google Scholar
Mitsuya, H. et al. 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA82, 7096–7100 (1985). ArticleCASPubMedPubMed Central Google Scholar
Sarafianos, S.G. et al. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J.20, 1449–1461 (2001). ArticleCASPubMedPubMed Central Google Scholar
Das, K. et al. Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J. Biol. Chem.284, 35092–35100 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lansdon, E.B. et al. Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase-DNA complex. J. Mol. Biol.397, 967–978 (2010). ArticleCASPubMed Google Scholar
Tuske, S. et al. Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat. Struct. Mol. Biol.11, 469–474 (2004). ArticleCASPubMed Google Scholar
Mizrahi, V., Henrie, R.N., Marlier, J.F., Johnson, K.A. & Benkovic, S.J. Rate-limiting steps in the DNA polymerase I reaction pathway. Biochemistry24, 4010–4018 (1985). ArticleCASPubMed Google Scholar
Beese, L.S., Derbyshire, V. & Steitz, T.A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science260, 352–355 (1993). ArticleCASPubMed Google Scholar
Li, Y., Korolev, S. & Waksman, G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J.17, 7514–7525 (1998). ArticleCASPubMedPubMed Central Google Scholar
Santoso, Y. et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA107, 715–720 (2010). ArticleCASPubMed Google Scholar
Zahn, K.E., Belrhali, H., Wallace, S.S. & Doublie, S. Caught bending the A-rule: crystal structures of translesion DNA synthesis with a non-natural nucleotide. Biochemistry46, 10551–10561 (2007). ArticleCASPubMed Google Scholar
Cai, H., Bloom, L.B., Eritja, R. & Goodman, M.F. Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J. Biol. Chem.268, 23567–23572 (1993). CASPubMed Google Scholar
Joyce, C.M. & Benkovic, S.J. DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry43, 14317–14324 (2004). ArticleCASPubMed Google Scholar
Molina, J.M. et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet378, 238–246 (2011). ArticleCASPubMed Google Scholar
Carr, A. et al. A controlled trial of nevirapine plus zidovudine versus zidovudine alone in p24 antigenaemic HIV-infected patients. The Dutch-Italian-Australian Nevirapine Study Group. AIDS10, 635–641 (1996). ArticleCASPubMed Google Scholar
Odriozola, L. et al. Non-nucleoside inhibitors of HIV-1 reverse transcriptase inhibit phosphorolysis and resensitize the 3′-azido-3′-deoxythymidine (AZT)-resistant polymerase to AZT-5′-triphosphate. J. Biol. Chem.278, 42710–42716 (2003). ArticleCASPubMed Google Scholar
Basavapathruni, A., Bailey, C.M. & Anderson, K.S. Defining a molecular mechanism of synergy between nucleoside and nonnucleoside AIDS drugs. J. Biol. Chem.279, 6221–6224 (2004). ArticleCASPubMed Google Scholar
Selmi, B. et al. The Y181C substitution in 3′-azido-3′-deoxythymidine-resistant human immunodeficiency virus, type 1, reverse transcriptase suppresses the ATP-mediated repair of the 3′-azido-3′-deoxythymidine 5′-monophosphate-terminated primer. J. Biol. Chem.278, 40464–40472 (2003). ArticleCASPubMed Google Scholar
Xu, H.T. et al. Compensation by the E138K mutation in HIV-1 reverse transcriptase for deficits in viral replication capacity and enzyme processivity associated with the M184I/V mutations. J. Virol.85, 11300–11308 (2011). ArticleCASPubMedPubMed Central Google Scholar
Biswal, B.K. et al. Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J. Biol. Chem.280, 18202–18210 (2005). ArticleCASPubMed Google Scholar
Bauman, J.D. et al. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res.36, 5083–5092 (2008). ArticleCASPubMedPubMed Central Google Scholar
DeStefano, J.J. et al. Characterization of an RNase H deficient mutant of human immunodeficiency virus-1 reverse transcriptase having an aspartate to asparagine change at position 498. Biochim. Biophys. Acta1219, 380–388 (1994). ArticleCASPubMed Google Scholar
Hou, X., Wang, G., Gaffney, B.L. & Jones, R.A. Synthesis of guanosine and deoxyguanosine phosphoramidites with cross-linkable thioalkyl tethers for direct incorporation into RNA and DNA. Nucleosides Nucleotides Nucleic Acids28, 1076–1094 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sarafianos, S.G. et al. Trapping HIV-1 reverse transcriptase before and after translocation on DNA. J. Biol. Chem.278, 16280–16288 (2003). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. DENZO and SCALEPACK. in International Tables for Crystallography Vol. F: Crystallography of Biological Macromolecules (Kluwer, Boston, 2001).
Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA103, 8060–8065 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cowtan, K. 'dm': An automated procedure for phase improvement by density modification. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31, 34–38 (Daresbury Laboratory, Warrington, UK, 1994).
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar