Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex (original) (raw)

References

  1. Köhler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).
    Google Scholar
  2. Kelly, S.M. & Corbett, A.H. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 10, 1199–1208 (2009).
    Google Scholar
  3. Stewart, M. Nuclear export of mRNA. Trends Biochem. Sci. 35, 609–617 (2010).
    Google Scholar
  4. Rodríguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol. 23, 302–309 (2011).
    Google Scholar
  5. Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).
    Google Scholar
  6. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).
    Google Scholar
  7. Hurt, E., Luo, M.-J., Röther, S., Reed, R. & Strässer, K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl. Acad. Sci. USA 101, 1858–1862 (2004).
    Google Scholar
  8. Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002).
    Google Scholar
  9. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).
    Google Scholar
  10. Blobel, G. Gene gating: a hypothesis. Proc. Natl. Acad. Sci. USA 82, 8527–8529 (1985).
    Google Scholar
  11. Rodríguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86 (2004).
    Google Scholar
  12. Cabal, G.G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770–773 (2006).
    Google Scholar
  13. Fischer, T. et al. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat. Cell Biol. 6, 840–848 (2004).
    Google Scholar
  14. Light, W.H., Brickner, D.G., Brand, V.R. & Brickner, J.H. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol. Cell 40, 112–125 (2010).
    Google Scholar
  15. Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat. Cell Biol. 12, 111–118 (2010).
    Google Scholar
  16. Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J. 25, 4253–4262 (2006).
    Google Scholar
  17. Chekanova, J.A., Abruzzi, K.C., Rosbash, M. & Belostotsky, D.A. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA 14, 66–77 (2008).
    Google Scholar
  18. Egecioglu, D. & Brickner, J.H. Gene positioning and expression. Curr. Opin. Cell Biol. 23, 338–345 (2011).
    Google Scholar
  19. González-Aguilera, C. et al. The THP1–SAC3-SUS1–CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol. Biol. Cell 19, 4310–4318 (2008).
    Google Scholar
  20. Tous, C. et al. A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J. 30, 1953–1964 (2011).
    Google Scholar
  21. Fischer, T. et al. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J. 21, 5843–5852 (2002).
    Google Scholar
  22. Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727–737 (2009).
    Google Scholar
  23. Wilmes, G.M. et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 32, 735–746 (2008).
    Google Scholar
  24. Faza, M.B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 184, 833–846 (2009).
    Google Scholar
  25. Pick, E., Hofmann, K. & Glickman, M.H. PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 35, 260–264 (2009).
    Google Scholar
  26. Brickner, D.G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).
    Google Scholar
  27. Wickramasinghe, V.O. et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr. Biol. 20, 25–31 (2010).
    Google Scholar
  28. Dessau, M. et al. The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly. Plant Cell 20, 2815–2834 (2008).
    Google Scholar
  29. Wei, Z. et al. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279, 34983–34990 (2004).
    Google Scholar
  30. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).
    Google Scholar
  31. Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem. 278, 24225–24232 (2003).
    Google Scholar
  32. Faza, M.B., Kemmler, S. & Panse, V.G. Sem1: A versatile “molecular glue”? Nucleus 1, 12–17 (2010).
    Google Scholar
  33. Sharon, M., Taverner, T., Ambroggio, X.I., Deshaies, R.J. & Robinson, C.V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 (2006).
    Google Scholar
  34. Isono, E., Saeki, Y., Yokosawa, H. & Toh-e, A. Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J. Biol. Chem. 279, 27168–27176 (2004).
    Google Scholar
  35. Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M. & Kobayashi, H. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell Sci. 117, 6447–6454 (2004).
    Google Scholar
  36. Wei, S.-J. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J. Mol. Biol. 383, 693–712 (2008).
    Google Scholar
  37. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).
    Google Scholar
  38. Scheel, H. & Hofmann, K. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinformatics 6, 71 (2005).
    Google Scholar
  39. Jimeno, S. et al. New suppressors of THO mutations identify Thp3 (Ypr045c)-Csn12 as a protein complex involved in transcription elongation. Mol. Cell. Biol. 31, 674–685 (2011).
    Google Scholar
  40. Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004).
    Google Scholar
  41. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).
    Google Scholar
  42. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).
    Google Scholar
  43. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr. 52, 30–42 (1996).
    Google Scholar
  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Google Scholar
  45. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    Google Scholar
  46. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
  47. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
    Google Scholar
  48. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Google Scholar
  49. Edelheit, O., Hanukoglu, A. & Hanukoglu, I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol. 9, 61 (2009).
    Google Scholar
  50. Amberg, D.C., Goldstein, A.L. & Cole, C.N. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189 (1992).
    Google Scholar
  51. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).
    Google Scholar

Download references