Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex (original) (raw)
References
Köhler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol.8, 761–773 (2007). Google Scholar
Kelly, S.M. & Corbett, A.H. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic10, 1199–1208 (2009). Google Scholar
Stewart, M. Nuclear export of mRNA. Trends Biochem. Sci.35, 609–617 (2010). Google Scholar
Rodríguez-Navarro, S. & Hurt, E. Linking gene regulation to mRNA production and export. Curr. Opin. Cell Biol.23, 302–309 (2011). Google Scholar
Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J.19, 5824–5834 (2000). Google Scholar
Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature417, 304–308 (2002). Google Scholar
Hurt, E., Luo, M.-J., Röther, S., Reed, R. & Strässer, K. Cotranscriptional recruitment of the serine-arginine-rich (SR)-like proteins Gbp2 and Hrb1 to nascent mRNA via the TREX complex. Proc. Natl. Acad. Sci. USA101, 1858–1862 (2004). Google Scholar
Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell108, 523–531 (2002). Google Scholar
Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol.13, 319–327 (2003). Google Scholar
Blobel, G. Gene gating: a hypothesis. Proc. Natl. Acad. Sci. USA82, 8527–8529 (1985). Google Scholar
Rodríguez-Navarro, S. et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell116, 75–86 (2004). Google Scholar
Cabal, G.G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature441, 770–773 (2006). Google Scholar
Fischer, T. et al. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat. Cell Biol.6, 840–848 (2004). Google Scholar
Light, W.H., Brickner, D.G., Brand, V.R. & Brickner, J.H. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol. Cell40, 112–125 (2010). Google Scholar
Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat. Cell Biol.12, 111–118 (2010). Google Scholar
Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K. & Rosbash, M. 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J.25, 4253–4262 (2006). Google Scholar
Chekanova, J.A., Abruzzi, K.C., Rosbash, M. & Belostotsky, D.A. Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA14, 66–77 (2008). Google Scholar
Egecioglu, D. & Brickner, J.H. Gene positioning and expression. Curr. Opin. Cell Biol.23, 338–345 (2011). Google Scholar
González-Aguilera, C. et al. The THP1–SAC3-SUS1–CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol. Biol. Cell19, 4310–4318 (2008). Google Scholar
Tous, C. et al. A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J.30, 1953–1964 (2011). Google Scholar
Fischer, T. et al. The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J.21, 5843–5852 (2002). Google Scholar
Jani, D. et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell33, 727–737 (2009). Google Scholar
Wilmes, G.M. et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell32, 735–746 (2008). Google Scholar
Faza, M.B. et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol.184, 833–846 (2009). Google Scholar
Pick, E., Hofmann, K. & Glickman, M.H. PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell35, 260–264 (2009). Google Scholar
Brickner, D.G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol.5, e81 (2007). Google Scholar
Wickramasinghe, V.O. et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr. Biol.20, 25–31 (2010). Google Scholar
Dessau, M. et al. The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly. Plant Cell20, 2815–2834 (2008). Google Scholar
Wei, Z. et al. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem.279, 34983–34990 (2004). Google Scholar
Gallardo, M., Luna, R., Erdjument-Bromage, H., Tempst, P. & Aguilera, A. Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J. Biol. Chem.278, 24225–24232 (2003). Google Scholar
Faza, M.B., Kemmler, S. & Panse, V.G. Sem1: A versatile “molecular glue”? Nucleus1, 12–17 (2010). Google Scholar
Sharon, M., Taverner, T., Ambroggio, X.I., Deshaies, R.J. & Robinson, C.V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol.4, e267 (2006). Google Scholar
Isono, E., Saeki, Y., Yokosawa, H. & Toh-e, A. Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J. Biol. Chem.279, 27168–27176 (2004). Google Scholar
Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M. & Kobayashi, H. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell Sci.117, 6447–6454 (2004). Google Scholar
Wei, S.-J. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J. Mol. Biol.383, 693–712 (2008). Google Scholar
Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell101, 199–210 (2000). Google Scholar
Scheel, H. & Hofmann, K. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinformatics6, 71 (2005). Google Scholar
Jimeno, S. et al. New suppressors of THO mutations identify Thp3 (Ypr045c)-Csn12 as a protein complex involved in transcription elongation. Mol. Cell. Biol.31, 674–685 (2011). Google Scholar
Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature432, 872–877 (2004). Google Scholar
Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol.364, 215–230 (2007). Google Scholar
de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997). Google Scholar
Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D Biol. Crystallogr.52, 30–42 (1996). Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Google Scholar
Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr.66, 213–221 (2010). Google Scholar
Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010). Google Scholar
Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). Google Scholar
Edelheit, O., Hanukoglu, A. & Hanukoglu, I. Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol.9, 61 (2009). Google Scholar
Amberg, D.C., Goldstein, A.L. & Cole, C.N. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev.6, 1173–1189 (1992). Google Scholar
Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol.17, 1030–1032 (1999). Google Scholar