Mayer, A.M., Rodriguez, A.D., Berlinck, R.G. & Fusetani, N. Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol.153, 191–222 (2011). Article Google Scholar
Driggers, E.M., Hale, S.P., Lee, J. & Terrett, N.K. The exploration of macrocycles for drug discovery–an underexploited structural class. Nat. Rev. Drug Discov.7, 608–624 (2008). ArticleCAS Google Scholar
Cuevas, C. & Francesch, A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep.26, 322–337 (2009). ArticleCAS Google Scholar
McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep.26, 537–559 (2009). ArticleCAS Google Scholar
Sivonen, K., Leikoski, N., Fewer, D.P. & Jokela, J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol.86, 1213–1225 (2010). ArticleCAS Google Scholar
Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA102, 7315–7320 (2005). ArticleCAS Google Scholar
Long, P.F., Dunlap, W.C., Battershill, C.N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem.6, 1760–1765 (2005). ArticleCAS Google Scholar
Schmidt, E.W. The hidden diversity of ribosomal peptide natural products. BMC Biol.8, 83 (2010). Article Google Scholar
Houssen, W.E. & Jaspars, M. Azole-based cyclic peptides from the sea squirt Lissoclinum patella: old scaffolds, new avenues. ChemBioChem11, 1803–1815 (2010). ArticleCAS Google Scholar
Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol.2, 729–735 (2006). ArticleCAS Google Scholar
Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol.4, 341–343 (2008). ArticleCAS Google Scholar
Houssen, W.E. et al. Solution structure of the leader sequence of the patellamide precursor peptide, PatE1–34. ChemBioChem.11, 1867–1873 (2010). ArticleCAS Google Scholar
Lee, J., McIntosh, J., Hathaway, B.J. & Schmidt, E.W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc.131, 2122–2124 (2009). ArticleCAS Google Scholar
McIntosh, J.A. et al. Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J. Am. Chem. Soc.132, 15499–15501 (2010). ArticleCAS Google Scholar
Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun.27, 157–162 (1967). ArticleCAS Google Scholar
Katoh, T., Goto, Y., Reza, M.S. & Suga, H. Ribosomal synthesis of backbone macrocyclic peptides. Chem. Commun. (Camb.)47, 9946–9958 (2011). ArticleCAS Google Scholar
Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature407, 215–218 (2000). ArticleCAS Google Scholar
Schneider, A. & Marahiel, M.A. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch. Microbiol.169, 404–410 (1998). ArticleCAS Google Scholar
Cane, D.E. & Walsh, C.T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol.6, R319–R325 (1999). ArticleCAS Google Scholar
Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif.63, 102–111 (2009). ArticleCAS Google Scholar
Dodson, G. & Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci.23, 347–352 (1998). ArticleCAS Google Scholar
Perona, J.J. & Craik, C.S. Structural basis of substrate specificity in the serine proteases. Protein Sci.4, 337–360 (1995). ArticleCAS Google Scholar
Ziemert, N. et al. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl. Environ. Microbiol.74, 1791–1797 (2008). ArticleCAS Google Scholar
Donia, M.S. & Schmidt, E.W. Linking chemistry and genetics in the growing cyanobactin natural products family. Chem. Biol.18, 508–519 (2011). ArticleCAS Google Scholar
Popp, M.W. & Ploegh, H.L. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Edn Engl.50, 5024–5032 (2011). ArticleCAS Google Scholar
Ahvazi, B. & Steinert, P.M. A model for the reaction mechanism of the transglutaminase 3 enzyme. Exp. Mol. Med.35, 228–242 (2003). ArticleCAS Google Scholar
Zhu, X., Robinson, D.A., McEwan, A.R., O'Hagan, D. & Naismith, J.H. Mechanism of enzymatic fluorination in _Streptomyces cattley_a. J. Am. Chem. Soc.129, 14597–14604 (2007). ArticleCAS Google Scholar
Milne, B.F., Long, P.F., Starcevic, A., Hranueli, D. & Jaspars, M. Spontaneity in the patellamide biosynthetic pathway. Org. Biomol. Chem.4, 631–638 (2006). ArticleCAS Google Scholar
Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif.63, 102–111 (2009). ArticleCAS Google Scholar
Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif.41, 207–234 (2005). ArticleCAS Google Scholar
Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr.43, 186–190 (2009). Article Google Scholar
Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D. Biol. Crystallogr.60, 432–438 (2004). Article Google Scholar
McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D. Biol. Crystallogr.61, 458–464 (2005). Article Google Scholar
Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat.11, 53–55 (2004). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr.50, 760–763 (1994).