The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain (original) (raw)

References

  1. Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H. & Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 29, 144–222 (2012).
    Article CAS Google Scholar
  2. Mayer, A.M., Rodriguez, A.D., Berlinck, R.G. & Fusetani, N. Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 191–222 (2011).
    Article Google Scholar
  3. Driggers, E.M., Hale, S.P., Lee, J. & Terrett, N.K. The exploration of macrocycles for drug discovery–an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).
    Article CAS Google Scholar
  4. Cuevas, C. & Francesch, A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26, 322–337 (2009).
    Article CAS Google Scholar
  5. McIntosh, J.A., Donia, M.S. & Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep. 26, 537–559 (2009).
    Article CAS Google Scholar
  6. Sivonen, K., Leikoski, N., Fewer, D.P. & Jokela, J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).
    Article CAS Google Scholar
  7. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).
    Article CAS Google Scholar
  8. Long, P.F., Dunlap, W.C., Battershill, C.N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem. 6, 1760–1765 (2005).
    Article CAS Google Scholar
  9. Schmidt, E.W. The hidden diversity of ribosomal peptide natural products. BMC Biol. 8, 83 (2010).
    Article Google Scholar
  10. Houssen, W.E. & Jaspars, M. Azole-based cyclic peptides from the sea squirt Lissoclinum patella: old scaffolds, new avenues. ChemBioChem 11, 1803–1815 (2010).
    Article CAS Google Scholar
  11. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).
    Article CAS Google Scholar
  12. Donia, M.S., Ravel, J. & Schmidt, E.W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).
    Article CAS Google Scholar
  13. Houssen, W.E. et al. Solution structure of the leader sequence of the patellamide precursor peptide, PatE1–34. ChemBioChem. 11, 1867–1873 (2010).
    Article CAS Google Scholar
  14. Lee, J., McIntosh, J., Hathaway, B.J. & Schmidt, E.W. Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J. Am. Chem. Soc. 131, 2122–2124 (2009).
    Article CAS Google Scholar
  15. McIntosh, J.A. et al. Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J. Am. Chem. Soc. 132, 15499–15501 (2010).
    Article CAS Google Scholar
  16. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).
    Article CAS Google Scholar
  17. Katoh, T., Goto, Y., Reza, M.S. & Suga, H. Ribosomal synthesis of backbone macrocyclic peptides. Chem. Commun. (Camb.) 47, 9946–9958 (2011).
    Article CAS Google Scholar
  18. Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A. & Walsh, C.T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000).
    Article CAS Google Scholar
  19. Schneider, A. & Marahiel, M.A. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch. Microbiol. 169, 404–410 (1998).
    Article CAS Google Scholar
  20. Cane, D.E. & Walsh, C.T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, R319–R325 (1999).
    Article CAS Google Scholar
  21. Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif. 63, 102–111 (2009).
    Article CAS Google Scholar
  22. Dodson, G. & Wlodawer, A. Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352 (1998).
    Article CAS Google Scholar
  23. Perona, J.J. & Craik, C.S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).
    Article CAS Google Scholar
  24. Ziemert, N. et al. Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl. Environ. Microbiol. 74, 1791–1797 (2008).
    Article CAS Google Scholar
  25. Donia, M.S. & Schmidt, E.W. Linking chemistry and genetics in the growing cyanobactin natural products family. Chem. Biol. 18, 508–519 (2011).
    Article CAS Google Scholar
  26. Popp, M.W. & Ploegh, H.L. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Edn Engl. 50, 5024–5032 (2011).
    Article CAS Google Scholar
  27. Ahvazi, B. & Steinert, P.M. A model for the reaction mechanism of the transglutaminase 3 enzyme. Exp. Mol. Med. 35, 228–242 (2003).
    Article CAS Google Scholar
  28. Zhu, X., Robinson, D.A., McEwan, A.R., O'Hagan, D. & Naismith, J.H. Mechanism of enzymatic fluorination in _Streptomyces cattley_a. J. Am. Chem. Soc. 129, 14597–14604 (2007).
    Article CAS Google Scholar
  29. Milne, B.F., Long, P.F., Starcevic, A., Hranueli, D. & Jaspars, M. Spontaneity in the patellamide biosynthetic pathway. Org. Biomol. Chem. 4, 631–638 (2006).
    Article CAS Google Scholar
  30. Liu, H. & Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif. 63, 102–111 (2009).
    Article CAS Google Scholar
  31. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
    Article CAS Google Scholar
  32. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2009).
    Article Google Scholar
  33. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D. Biol. Crystallogr. 60, 432–438 (2004).
    Article Google Scholar
  34. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D. Biol. Crystallogr. 61, 458–464 (2005).
    Article Google Scholar
  35. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004).
    Article CAS Google Scholar
  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article Google Scholar
  37. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS Google Scholar
  38. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763 (1994).
  39. Cammish, L.E. & Kates,, S.A. Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Oxford Univ. Press, 2000).

Download references