The APOBEC3C crystal structure and the interface for HIV-1 Vif binding (original) (raw)
References
Goila-Gaur, R. & Strebel, K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology5, 51 (2008). Article Google Scholar
LaRue, R.S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol.83, 494–497 (2009). ArticleCAS Google Scholar
Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet.19, 207–216 (2003). ArticleCAS Google Scholar
Jäger, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature481, 371–375 (2012). Article Google Scholar
Zhang, W., Du, J., Evans, S.L., Yu, Y. & Yu, X.F. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature481, 376–379 (2012). ArticleCAS Google Scholar
Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med.9, 1398–1403 (2003). ArticleCAS Google Scholar
Sheehy, A.M., Gaddis, N.C. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med.9, 1404–1407 (2003). ArticleCAS Google Scholar
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science302, 1056–1060 (2003). ArticleCAS Google Scholar
Russell, R.A., Smith, J., Barr, R., Bhattacharyya, D. & Pathak, V.K. Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. J. Virol.83, 1992–2003 (2009). ArticleCAS Google Scholar
Smith, J.L. & Pathak, V.K. Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J. Virol.84, 12599–12608 (2010). ArticleCAS Google Scholar
Zhen, A., Wang, T., Zhao, K., Xiong, Y. & Yu, X.F. A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity. J. Virol.84, 1902–1911 (2010). ArticleCAS Google Scholar
Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA101, 3770–3774 (2004). ArticleCAS Google Scholar
Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem.279, 14481–14483 (2004). ArticleCAS Google Scholar
Schröfelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA101, 3927–3932 (2004). Article Google Scholar
Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA101, 5652–5657 (2004). ArticleCAS Google Scholar
Huthoff, H. & Malim, M.H. Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation. J. Virol.81, 3807–3815 (2007). ArticleCAS Google Scholar
Albin, J.S. et al. A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif. J. Biol. Chem.285, 40785–40792 (2010). ArticleCAS Google Scholar
Chen, K.M. et al. Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature452, 116–119 (2008). ArticleCAS Google Scholar
Furukawa, A. et al. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J.28, 440–451 (2009). ArticleCAS Google Scholar
Holden, L.G. et al. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature456, 121–124 (2008). ArticleCAS Google Scholar
Shandilya, S.M. et al. Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure18, 28–38 (2010). ArticleCAS Google Scholar
Betts, L., Xiang, S., Short, S.A., Wolfenden, R. & Carter, C.W.J. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. J. Mol. Biol.235, 635–656 (1994). ArticleCAS Google Scholar
Prochnow, C., Bransteitter, R., Klein, M.G., Goodman, M.F. & Chen, X.S. The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature445, 447–451 (2007). ArticleCAS Google Scholar
Krzysiak, T.C., Jung, J., Thompson, J., Baker, D. & Gronenborn, A.M. APOBEC2 is a monomer in solution: implications for APOBEC3G models. Biochemistry51, 2008–2017 (2012). ArticleCAS Google Scholar
Iwatani, Y. et al. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc. Natl. Acad. Sci. USA106, 19539–19544 (2009). ArticleCAS Google Scholar
Russell, R.A. & Pathak, V.K. Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J. Virol.81, 8201–8210 (2007). ArticleCAS Google Scholar
Larue, R.S., Lengyel, J., Jónsson, S.R., Andrésdóttir, V. & Harris, R.S. Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J. Virol.84, 8193–8201 (2010). ArticleCAS Google Scholar
Kitamura, S., Ode, H. & Iwatani, Y. Structural features of antiviral APOBEC3 proteins are linked to their functional activities. Front. Microbiol.2, 258 (2011). ArticleCAS Google Scholar
Hultquist, J.F., Binka, M., Larue, R.S., Simon, V. & Harris, R.S. Vif proteins of human and simian immunodeficiency viruses require cellular CBFβ to degrade APOBEC3 restriction factors. J. Virol.86, 2874–2877 (2012). ArticleCAS Google Scholar
He, Z., Zhang, W., Chen, G., Xu, R. & Yu, X.F. Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J. Mol. Biol.381, 1000–1011 (2008). ArticleCAS Google Scholar
Pery, E., Rajendran, K.S., Brazier, A.J. & Gabuzda, D. Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. J. Virol.83, 2374–2381 (2009). ArticleCAS Google Scholar
Schröfelbauer, B., Senger, T., Manning, G. & Landau, N.R. Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J. Virol.80, 5984–5991 (2006). Article Google Scholar
Tian, C. et al. Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J. Virol.80, 3112–3115 (2006). ArticleCAS Google Scholar
Stauch, B. et al. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc. Natl. Acad. Sci. USA106, 12079–12084 (2009). ArticleCAS Google Scholar
Kao, S. et al. The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J. Virol.77, 11398–11407 (2003). ArticleCAS Google Scholar
Kinomoto, M. et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res.35, 2955–2964 (2007). ArticleCAS Google Scholar
Nguyen, K.L. et al. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology319, 163–175 (2004). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-Ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Vargin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr.30, 1022–1025 (1997). Article Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
Roos, J.W., Maughan, M.F., Liao, Z., Hildreth, J.E. & Clements, J.E. LuSIV cells: a reporter cell line for the detection and quantitation of a single cycle of HIV and SIV replication. Virology273, 307–315 (2000). ArticleCAS Google Scholar