The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals (original) (raw)
Yamamoto, K.R., Darimont, B., Wagner, R. & Iniguez-Lluhi, J. Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb. Symp. Quant. Biol.63, 587–598 (1998). ArticleCAS Google Scholar
Rosenfeld, M.G., Lunyak, V.V. & Glass, C.K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev.20, 1405–1428 (2006). ArticleCAS Google Scholar
Ricketson, D., Hostick, U., Fang, L., Yamamoto, K. & Darimont, B. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J. Mol. Biol.368, 729–741 (2007). ArticleCAS Google Scholar
Garza, A.M.S., Khan, S.H. & Kumar, R. Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol. Cell Biol.30, 220–230 (2010). ArticleCAS Google Scholar
Bledsoe, R.K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell110, 93–105 (2002). ArticleCAS Google Scholar
Frego, L. Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci.15, 722–730 (2006). ArticleCAS Google Scholar
Schoch, G.A. et al. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J. Mol. Biol.395, 568–577 (2010). ArticleCAS Google Scholar
Kauppi, B. et al. The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain: RU-486 induces a transconformation that leads to active antagonism. J. Biol. Chem.278, 22748–22754 (2003). ArticleCAS Google Scholar
Shah, N. & Scanlan, T.S. Design and evaluation of novel nonsteroidal dissociating glucocorticoid receptor ligands. Bioorg. Med. Chem. Lett.14, 5199–5203 (2004). ArticleCAS Google Scholar
Diamond, M.I., Miner, J.N., Yoshinaga, S.K. & Yamamoto, K.R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science249, 1266–1272 (1990). ArticleCAS Google Scholar
Rogatsky, I., Waase, C.L. & Garabedian, M.J. Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3). Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. J. Biol. Chem.273, 14315–14321 (1998). ArticleCAS Google Scholar
So, A.Y.-L., Chaivorapol, C., Bolton, E.C., Li, H. & Yamamoto, K.R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLoS Genet.3, e94 (2007). Article Google Scholar
La Baer, J. & Yamamoto, K.R. Analysis of the DNA-binding affinity, sequence specificity and context dependence of the glucocorticoid receptor zinc finger region. J. Mol. Biol.239, 664–688 (1994). ArticleCAS Google Scholar
Baumann, H. et al. Refined solution structure of the glucocorticoid receptor DNA-binding domain. Biochemistry32, 13463–13471 (1993). ArticleCAS Google Scholar
Härd, T. et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science249, 157–160 (1990). Article Google Scholar
Luisi, B.F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature352, 497–505 (1991). ArticleCAS Google Scholar
Meijsing, S.H. et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science324, 407–410 (2009). ArticleCAS Google Scholar
Lefstin, J.A. & Yamamoto, K.R. Allosteric effects of DNA on transcriptional regulators. Nature392, 885–888 (1998). ArticleCAS Google Scholar
Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: curves. Nucleic Acids Res.37, 5917–5929 (2009). ArticleCAS Google Scholar
Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature461, 1248–1253 (2009). ArticleCAS Google Scholar
Zhuravleva, A. & Gierasch, L.M. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA108, 6987–6992 (2011). ArticleCAS Google Scholar
Selvaratnam, R., Chowdhury, S., VanSchouwen, B. & Melacini, G. Mapping allostery through the covariance analysis of NMR chemical shifts. Proc. Natl. Acad. Sci. USA108, 6133–6138 (2011). ArticleCAS Google Scholar
Masterson, L.R., Mascioni, A., Traaseth, N.J., Taylor, S.S. & Veglia, G. Allosteric cooperativity in protein kinase A. Proc. Natl. Acad. Sci. USA105, 506–511 (2008). ArticleCAS Google Scholar
Heck, S. et al. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J.13, 4087–4095 (1994). ArticleCAS Google Scholar
Floor, S.N., Borja, M.S. & Gross, J.D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. USA109, 2872–2877 (2012). ArticleCAS Google Scholar
Bain, D.L. et al. Glucocorticoid receptor-DNA interactions: binding energetics are the primary determinant of sequence-specific transcriptional activity. J. Mol. Biol.422, 18–32 (2012). ArticleCAS Google Scholar
Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR4, 727–734 (1994). ArticleCAS Google Scholar
Iñiguez-Lluhí, J.A., Lou, D.Y. & Yamamoto, K.R. Three amino acid substitutions selectively disrupt the activation but not the repression function of the glucocorticoid receptor N terminus. J. Biol. Chem.272, 4149–4156 (1997). Article Google Scholar
Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev.12, 3343–3356 (1998). ArticleCAS Google Scholar
Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature375, 377–382 (1995). ArticleCAS Google Scholar
Egea, P.F. et al. Crystal structure of the human RXRα ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J.19, 2592–2601 (2000). ArticleCAS Google Scholar
Lusher, S.J. et al. Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. J. Biol. Chem.286, 35079–35086 (2011). ArticleCAS Google Scholar
Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell95, 927–937 (1998). ArticleCAS Google Scholar
Brzozowski, A.M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature389, 753–758 (1997). ArticleCAS Google Scholar
Hall, J.M., McDonnell, D.P. & Korach, K.S. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol. Endocrinol.16, 469–486 (2002). ArticleCAS Google Scholar
Engel, K.B. & Yamamoto, K.R. The glucocorticoid receptor and the coregulator Brm selectively modulate each other's occupancy and activity in a gene-specific manner. Mol. Cell Biol.31, 3267–3276 (2011). ArticleCAS Google Scholar
Wang, J.-C. et al. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev.20, 689–699 (2006). ArticleCAS Google Scholar
Zhang, J. et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat. Struct. Mol. Biol.18, 556–563 (2011). Article Google Scholar
Shulman, A.I., Larson, C., Mangelsdorf, D.J. & Ranganathan, R. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell116, 417–429 (2004). ArticleCAS Google Scholar
Rogatsky, I. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA100, 13845–13850 (2003). ArticleCAS Google Scholar
Tao, Y.-G., Xu, Y., Xu, H.E. & Simons, S.S. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression. Biochemistry47, 7648–7662 (2008). ArticleCAS Google Scholar
Lee, G.-S. & Simons, S.S. Jr. Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry50, 356–366 (2011). ArticleCAS Google Scholar
Joshi, R. et al. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell131, 530–543 (2007). ArticleCAS Google Scholar
Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell147, 1270–1282 (2011). ArticleCAS Google Scholar
Scully, K.M. et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science290, 1127–1131 (2000). ArticleCAS Google Scholar
McNally, J.G., Müller, W.G., Walker, D., Wolford, R. & Hager, G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science287, 1262–1265 (2000). ArticleCAS Google Scholar
Stavreva, D.A., Müller, W.G., Hager, G.L., Smith, C.L. & McNally, J.G. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell Biol.24, 2682–2697 (2004). ArticleCAS Google Scholar
Holmbeck, S.M., Dyson, H.J. & Wright, P.E. DNA-induced conformational changes are the basis for cooperative dimerization by the DNA binding domain of the retinoid X receptor. J. Mol. Biol.284, 533–539 (1998). ArticleCAS Google Scholar
Ackers, G.K., Johnson, A.D. & Shea, M.A. Quantitative model for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci. USA79, 1129–1133 (1982). ArticleCAS Google Scholar
Robblee, J.P., Miura, M.T. & Bain, D.L. Glucocorticoid receptor–promoter interactions: energetic dissection suggests a framework for the specificity of steroid receptor-mediated gene regulation. Biochemistry51, 4463–4472 (2012). ArticleCAS Google Scholar
Hudson, W.H., Youn, C. & Ortlund, E.A. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol.20, 53–58 (2012). Article Google Scholar
Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc.34, 93–158 (1999). ArticleCAS Google Scholar
Salzmann, M., Wider, G., Pervushin, K., Senn, H. & Wüthrich, K. TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J. Am. Chem. Soc.121, 844–848 (1999). ArticleCAS Google Scholar
Talluri, S. & Wagner, G. An optimized 3D NOESY-HSQC. J. Magn. Reson. B.112, 200–205 (1996). ArticleCAS Google Scholar
Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wüthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA95, 13585–13590 (1998). ArticleCAS Google Scholar
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR6, 277–293 (1995). ArticleCAS Google Scholar
Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR4, 727–734 (1994). ArticleCAS Google Scholar
Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). ArticleCAS Google Scholar
Machanick, P. & Bailey, T.L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics27, 1696–1697 (2011). ArticleCAS Google Scholar