The human cap-binding complex is functionally connected to the nuclear RNA exosome (original) (raw)
References
Chlebowski, A., Lubas, M., Jensen, T.H. & Dziembowski, A. RNA decay machines: the exosome. Biochim. Biophys. Acta1829, 552–560 (2013). ArticleCAS Google Scholar
Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell136, 763–776 (2009). ArticleCAS Google Scholar
Staals, R.H. et al. Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J.29, 2358–2367 (2010). ArticleCAS Google Scholar
Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J.29, 2342–2357 (2010). ArticleCAS Google Scholar
Lykke-Andersen, S., Brodersen, D.E. & Jensen, T.H. Origins and activities of the eukaryotic exosome. J. Cell Sci.122, 1487–1494 (2009). ArticleCAS Google Scholar
Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell43, 624–637 (2011). ArticleCAS Google Scholar
LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell121, 713–724 (2005). ArticleCAS Google Scholar
Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell121, 725–737 (2005). ArticleCAS Google Scholar
Vanácová, S. et al. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol.3, e189 (2005). Article Google Scholar
Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science322, 1851–1854 (2008). ArticleCAS Google Scholar
Arigo, J.T., Eyler, D.E., Carroll, K.L. & Corden, J.L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell23, 841–851 (2006). ArticleCAS Google Scholar
Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell23, 853–864 (2006). ArticleCAS Google Scholar
Vasiljeva, L. & Buratowski, S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol. Cell21, 239–248 (2006). ArticleCAS Google Scholar
Steinmetz, E.J., Conrad, N.K., Brow, D.A. & Corden, J.L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature413, 327–331 (2001). ArticleCAS Google Scholar
Gruber, J.J. et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell138, 328–339 (2009). ArticleCAS Google Scholar
Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell78, 657–668 (1994). ArticleCAS Google Scholar
Rasmussen, E.B. & Lis, J.T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA90, 7923–7927 (1993). ArticleCAS Google Scholar
Görnemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell19, 53–63 (2005). Article Google Scholar
Flaherty, S.M., Fortes, P., Izaurralde, E., Mattaj, I.W. & Gilmartin, G.M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl. Acad. Sci. USA94, 11893–11898 (1997). ArticleCAS Google Scholar
Hosoda, N., Kim, Y.K., Lejeune, F. & Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol.12, 893–901 (2005). ArticleCAS Google Scholar
Izaurralde, E. et al. A cap-binding protein complex mediating U snRNA export. Nature376, 709–712 (1995). ArticleCAS Google Scholar
Cheng, H. et al. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell127, 1389–1400 (2006). ArticleCAS Google Scholar
Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I.W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell101, 187–198 (2000). ArticleCAS Google Scholar
Kataoka, N., Ohno, M., Moda, I. & Shimura, Y. Identification of the factors that interact with NCBP, an 80 kDa nuclear cap binding protein. Nucleic Acids Res.23, 3638–3641 (1995). ArticleCAS Google Scholar
Boulon, S. et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol. Cell16, 777–787 (2004). ArticleCAS Google Scholar
Balatsos, N.A., Nilsson, P., Mazza, C., Cusack, S. & Virtanen, A. Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC). J. Biol. Chem.281, 4517–4522 (2006). ArticleCAS Google Scholar
Domanski, M. et al. Improved methodology for the affinity isolation of human protein complexes expressed at near endogenous levels. Biotechniques0, 1–6 (2012). PubMedPubMed Central Google Scholar
Poser, I. et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods5, 409–415 (2008). ArticleCAS Google Scholar
Hubner, N.C. & Mann, M. Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods53, 453–459 (2011). ArticleCAS Google Scholar
Kiriyama, M., Kobayashi, Y., Saito, M., Ishikawa, F. & Yonehara, S. Interaction of FLASH with arsenite resistance protein 2 is involved in cell cycle progression at S phase. Mol. Cell Biol.29, 4729–4741 (2009). ArticleCAS Google Scholar
Preker, P. et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res.39, 7179–7193 (2011). ArticleCAS Google Scholar
Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol.20, 923–928 (2013). ArticleCAS Google Scholar
Hallais, M. et al. CBC-ARS2 stimulate 3′-end maturation of multiple RNA families and favor cap-proximal processing. Nat. Struct. Mol. Biol. 10.1038/nsmb.2720 (24 November 2013).
Andrulis, E.D. et al. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature420, 837–841 (2002). ArticleCAS Google Scholar
Hessle, V. et al. The exosome associates cotranscriptionally with the nascent pre-mRNP through interactions with heterogeneous nuclear ribonucleoproteins. Mol. Biol. Cell20, 3459–3470 (2009). ArticleCAS Google Scholar
Hieronymus, H., Yu, M.C. & Silver, P.A. Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev.18, 2652–2662 (2004). ArticleCAS Google Scholar
Das, B., Butler, J.S. & Sherman, F. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol. Cell Biol.23, 5502–5515 (2003). ArticleCAS Google Scholar
Kuai, L., Das, B. & Sherman, F. A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA102, 13962–13967 (2005). ArticleCAS Google Scholar
Visa, N., Izaurralde, E., Ferreira, J., Daneholt, B. & Mattaj, I.W. A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cell Biol.133, 5–14 (1996). ArticleCAS Google Scholar
Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol.15, 71–78 (2008). ArticleCAS Google Scholar
Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol.13, 815–822 (2006). ArticleCAS Google Scholar
Andreu-Agullo, C., Maurin, T., Thompson, C.B. & Lai, E.C. Ars2 maintains neural stem-cell identity through direct transcriptional activation of Sox2. Nature481, 195–198 (2012). ArticleCAS Google Scholar
Shi, Y. et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell33, 365–376 (2009). ArticleCAS Google Scholar
Narita, T. et al. NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol. Cell26, 349–365 (2007). ArticleCAS Google Scholar
Gruber, J.J. et al. Ars2 promotes proper replication-dependent histone mRNA 3′ end formation. Mol. Cell45, 87–98 (2012). ArticleCAS Google Scholar
Yang, X.C., Burch, B.D., Yan, Y., Marzluff, W.F. & Dominski, Z. FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol. Cell36, 267–278 (2009). ArticleCAS Google Scholar
Lenasi, T., Peterlin, B.M. & Barboric, M. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb). J. Biol. Chem.286, 22758–22768 (2011). ArticleCAS Google Scholar
Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell26, 867–881 (2007). ArticleCAS Google Scholar
Grzechnik, P. & Kufel, J. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol. Cell32, 247–258 (2008). ArticleCAS Google Scholar
Rondón, A.G., Mischo, H.E., Kawauchi, J. & Proudfoot, N.J. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol. Cell36, 88–98 (2009). Article Google Scholar
Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B. & Sharp, P.A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature499, 360–363 (2013). ArticleCAS Google Scholar
Gudipati, R.K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol.15, 786–794 (2008). ArticleCAS Google Scholar
Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol.15, 795–804 (2008). ArticleCAS Google Scholar
Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods6, 359–362 (2009). Article Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). ArticleCAS Google Scholar