Structure of the Rpn11–Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation (original) (raw)
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem.78, 477–513 (2009). ArticleCAS Google Scholar
Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev.82, 373–428 (2002). ArticleCAS Google Scholar
Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137, 133–145 (2009). ArticleCAS Google Scholar
Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J.28, 359–371 (2009). ArticleCAS Google Scholar
Thrower, J.S., Hoffman, L., Rechsteiner, M. & Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J.19, 94–102 (2000). ArticleCAS Google Scholar
Matyskiela, M.E. & Martin, A. Design principles of a universal protein degradation machine. J. Mol. Biol.425, 199–213 (2013). ArticleCAS Google Scholar
Saeki, Y. & Tanaka, K. Assembly and function of the proteasome. Methods Mol. Biol.832, 315–337 (2012). ArticleCAS Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature386, 463–471 (1997). ArticleCAS Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067 (2000). ArticleCAS Google Scholar
Glickman, M.H., Rubin, D.M., Fried, V.A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol.18, 3149–3162 (1998). ArticleCAS Google Scholar
Smith, D.M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's a ring opens the gate for substrate entry. Mol. Cell27, 731–744 (2007). ArticleCAS Google Scholar
Beckwith, R., Estrin, E., Worden, E.J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol.20, 1164–1172 (2013). ArticleCAS Google Scholar
Erales, J., Hoyt, M.A., Troll, F. & Coffino, P. Functional asymmetries of proteasome translocase pore. J. Biol. Chem.287, 18535–18543 (2012). ArticleCAS Google Scholar
Zhang, F. et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell34, 485–496 (2009). ArticleCAS Google Scholar
Peth, A., Nathan, J.A. & Goldberg, A.L. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J. Biol. Chem.288, 29215–29222 (2013). ArticleCAS Google Scholar
Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science298, 611–615 (2002). ArticleCAS Google Scholar
Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature419, 403–407 (2002). ArticleCAS Google Scholar
Inobe, T., Fishbain, S., Prakash, S. & Matouschek, A. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol.7, 161–167 (2011). ArticleCAS Google Scholar
Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature455, 358–362 (2008). ArticleCAS Google Scholar
Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. USA109, 14870–14875 (2012). ArticleCAS Google Scholar
Matyskiela, M.E., Lander, G.C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol.20, 781–788 (2013). ArticleCAS Google Scholar
Lander, G.C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature482, 186–191 (2012). ArticleCAS Google Scholar
Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J.28, 621–631 (2009). ArticleCAS Google Scholar
Estrin, E., Lopez-Blanco, J.R., Chacon, P. & Martin, A. Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure21, 1624–1635 (2013). ArticleCAS Google Scholar
Echalier, A. et al. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proc. Natl. Acad. Sci. USA110, 1273–1278 (2013). ArticleCAS Google Scholar
Sanches, M., Alves, B.S., Zanchin, N.I. & Guimaraes, B.G. The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer. J. Mol. Biol.370, 846–855 (2007). ArticleCAS Google Scholar
Cooper, E.M., Boeke, J.D. & Cohen, R.E. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J. Biol. Chem.285, 10344–10352 (2010). ArticleCAS Google Scholar
Hofmann, K. & Bucher, P. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci.23, 204–205 (1998). ArticleCAS Google Scholar
Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science316, 1194–1198 (2007). ArticleCAS Google Scholar
Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science316, 1198–1202 (2007). ArticleCAS Google Scholar
Davies, C.W., Paul, L.N., Kim, M.I. & Das, C. Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: nearly identical fold but different stability. J. Mol. Biol.413, 416–429 (2011). ArticleCAS Google Scholar
Ye, Y. et al. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature492, 266–270 (2012). ArticleCAS Google Scholar
Pickart, C.M. & Raasi, S. Controlled synthesis of polyubiquitin chains. Methods Enzymol.399, 21–36 (2005). ArticleCAS Google Scholar
Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin-activating enzyme. J. Biol. Chem.257, 2537–2542 (1982). CASPubMed Google Scholar
Dong, K.C. et al. Preparation of distinct ubiquitin chain reagents of high purity and yield. Structure19, 1053–1063 (2011). ArticleCAS Google Scholar
Sem, D.S. & McNeeley, P.A. Application of fluorescence polarization to the steady-state enzyme kinetic analysis of calpain II. FEBS Lett.443, 17–19 (1999). ArticleCAS Google Scholar
Adams, P.D., Mustyakimov, M., Afonine, P.V. & Langan, P. Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules. Acta Crystallogr. D Biol. Crystallogr.65, 567–573 (2009). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar