NuRD–ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination (original) (raw)
Moyzis, R.K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA85, 6622–6626 (1988). ArticleCASPubMedPubMed Central Google Scholar
van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998). ArticleCASPubMed Google Scholar
d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194–198 (2003). ArticleCASPubMed Google Scholar
Wang, R.C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell119, 355–368 (2004). ArticleCASPubMed Google Scholar
Hockemeyer, D., Sfeir, A.J., Shay, J.W., Wright, W.E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J.24, 2667–2678 (2005). ArticleCASPubMedPubMed Central Google Scholar
Celli, G.B., Denchi, E.L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol.8, 885–890 (2006). ArticlePubMed Google Scholar
Sfeir, A., Kabir, S., van Overbeek, M., Celli, G.B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science327, 1657–1661 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer33, 787–791 (1997). ArticleCASPubMed Google Scholar
Dunham, M.A., Neumann, A.A., Fasching, C.L. & Reddel, R.R. Telomere maintenance by recombination in human cells. Nat. Genet.26, 447–450 (2000). ArticleCASPubMed Google Scholar
Conomos, D. et al. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J. Cell Biol.199, 893–906 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. et al. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res.42, 1733–1746 (2014). ArticleCASPubMed Google Scholar
Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature482, 226–231 (2012). ArticleCASPubMed Google Scholar
Lovejoy, C.A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet.8, e1002772 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bower, K. et al. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres. PLoS ONE7, e50062 (2012). ArticleCASPubMedPubMed Central Google Scholar
O'Sullivan, R.J. et al. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat. Struct. Mol. Biol.21, 167–174 (2014). ArticleCASPubMedPubMed Central Google Scholar
Conomos, D., Pickett, H.A. & Reddel, R.R. Alternative lengthening of telomeres: remodeling the telomere architecture. Front. Oncol.3, 27 (2013). ArticlePubMedPubMed Central Google Scholar
Cui, S. et al. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol. Cell. Biol.31, 3298–3311 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pickett, H.A., Cesare, A.J., Johnstone, R.L., Neumann, A.A. & Reddel, R.R. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J.28, 799–809 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hong, W. et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J.24, 2367–2378 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lauberth, S.M. & Rauchman, M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J. Biol. Chem.281, 23922–23931 (2006). ArticleCASPubMed Google Scholar
Cismasiu, V.B. et al. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene24, 6753–6764 (2005). ArticleCASPubMed Google Scholar
Topark-Ngarm, A. et al. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J. Biol. Chem.281, 32272–32283 (2006). ArticleCASPubMed Google Scholar
Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell138, 660–672 (2009). ArticleCASPubMed Google Scholar
Porro, A., Feuerhahn, S. & Lingner, J. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Reports6, 765–776 (2014). ArticleCASPubMed Google Scholar
Yeager, T.R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res.59, 4175–4179 (1999). CASPubMed Google Scholar
Henson, J.D. et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat. Biotechnol.27, 1181–1185 (2009). ArticleCASPubMed Google Scholar
Londoño-Vallejo, J.A., Der-Sarkissian, H., Cazes, L., Bacchetti, S. & Reddel, R.R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res.64, 2324–2327 (2004). ArticlePubMed Google Scholar
Bechter, O.E., Zou, Y., Walker, W., Wright, W.E. & Shay, J.W. Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition. Cancer Res.64, 3444–3451 (2004). ArticleCASPubMed Google Scholar
Cesare, A.J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol.16, 1244–1251 (2009). ArticleCASPubMed Google Scholar
Cesare, A.J. & Reddel, R.R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet.11, 319–330 (2010). ArticleCASPubMed Google Scholar
Pan, M.R. et al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. J. Biol. Chem.287, 6764–6772 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lin, S.Y., Liang, Y. & Li, K. Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med. J.51, 295–301 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wu, G., Jiang, X., Lee, W.H. & Chen, P.L. Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen breakage syndrome 1. Cancer Res.63, 2589–2595 (2003). CASPubMed Google Scholar
Draskovic, I. et al. Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc. Natl. Acad. Sci. USA106, 15726–15731 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smeenk, G. et al. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol.190, 741–749 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lejon, S. et al. Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48.FOG-1 complex. J. Biol. Chem.286, 1196–1203 (2011). ArticleCASPubMed Google Scholar
Muntoni, A., Neumann, A.A., Hills, M. & Reddel, R.R. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres. Hum. Mol. Genet.18, 1017–1027 (2009). ArticleCASPubMed Google Scholar
Chan, K.L., North, P.S. & Hickson, I.D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J.26, 3397–3409 (2007). ArticleCASPubMedPubMed Central Google Scholar
Barefield, C. & Karlseder, J. The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res.40, 7358–7367 (2012). ArticleCASPubMedPubMed Central Google Scholar
Park, S.W. et al. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat. Struct. Mol. Biol.14, 68–75 (2007). ArticleCASPubMed Google Scholar
Polo, S.E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S.P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J.29, 3130–3139 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sims, J.K. & Wade, P.A. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Mol. Biol. Cell22, 3094–3102 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chou, D.M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl. Acad. Sci. USA107, 18475–18480 (2010). ArticleCASPubMedPubMed Central Google Scholar
Doksani, Y., Wu, J.Y., de Lange, T. & Zhuang, X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell155, 345–356 (2013). ArticleCASPubMedPubMed Central Google Scholar
Martínez, P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev.23, 2060–2075 (2009). ArticlePubMedPubMed Central Google Scholar
Episkopou, H. et al. Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res.42, 4391–4405 (2014). ArticleCASPubMedPubMed Central Google Scholar
Benetti, R. et al. Suv4–20h deficiency results in telomere elongation and derepression of telomere recombination. J. Cell Biol.178, 925–936 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol.8, 416–424 (2006). ArticleCASPubMed Google Scholar
Benetti, R., Garcia-Cao, M. & Blasco, M.A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet.39, 243–250 (2007). ArticleCASPubMed Google Scholar
Stern, J.L., Zyner, K.G., Pickett, H.A., Cohen, S.B. & Bryan, T.M. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol. Cell. Biol.32, 2384–2395 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cohen, S.B. & Reddel, R.R. A sensitive direct human telomerase activity assay. Nat. Methods5, 355–360 (2008). ArticleCASPubMed Google Scholar
Conomos, D. et al. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J. Cell Biol.199, 893–906 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pickett, H.A., Cesare, A.J., Johnstone, R.L., Neumann, A.A. & Reddel, R.R. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J.28, 799–809 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smyth, C.M., Helmer, M.A., Dalla-Pozza, L. & Rowe, P.B. Flow cytometric DNA analyses of frozen samples from children's solid tumors. Pathology25, 388–393 (1993). ArticleCASPubMed Google Scholar
Henson, J.D. et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat. Biotechnol.27, 1181–1185 (2009). ArticleCASPubMed Google Scholar