Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo–electron microscopy (original) (raw)

References

  1. Shcherbakova, P.V., Bebenek, K. & Kunkel, T.A. Functions of eukaryotic DNA polymerases. Sci. Aging Knowledge Environ. [online] 2003, RE3 (2003).
    Google Scholar
  2. Bebenek, K. & Kunkel, T.A. Functions of DNA polymerases. Adv. Protein Chem. 69, 137–165 (2004).
    Article CAS Google Scholar
  3. Brautigam, C.A. & Steitz, T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol. 8, 54–63 (1998).
    Article CAS Google Scholar
  4. Waga, S., Masuda, T., Takisawa, H. & Sugino, A. DNA polymerase epsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts. Proc. Natl. Acad. Sci. USA 98, 4978–4983 (2001).
    Article CAS Google Scholar
  5. Fukui, T. et al. Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 9, 179–191 (2004).
    Article CAS Google Scholar
  6. Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817 (2000).
    Article CAS Google Scholar
  7. Aparicio, O.M., Weinstein, D.M. & Bell, S.P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59–69 (1997).
    Article CAS Google Scholar
  8. Shcherbakova, P.V. & Pavlov, Y.I. 3′ → 5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142, 717–726 (1996).
    CAS PubMed PubMed Central Google Scholar
  9. Karthikeyan, R. et al. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J. Mol. Biol. 299, 405–419 (2000).
    Article CAS Google Scholar
  10. Chilkova, O., Jonsson, B.H. & Johansson, E. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J. Biol. Chem. 278, 14082–14086 (2003).
    Article CAS Google Scholar
  11. Johansson, E., Majka, J. & Burgers, P.M. Structure of DNA polymerase delta from Saccharomyces cerevisiae. J. Biol. Chem. 276, 43824–43828 (2001).
    Article CAS Google Scholar
  12. Jin, Y.H. et al. The 3′ → 5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98, 5122–5127 (2001).
    Article CAS Google Scholar
  13. Ayyagari, R., Gomes, X.V., Gordenin, D.A. & Burgers, P.M. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem. 278, 1618–1625 (2003).
    Article CAS Google Scholar
  14. Jin, Y.H., Ayyagari, R., Resnick, M.A., Gordenin, D.A. & Burgers, P.M. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol delta in the creation of a ligatable nick. J. Biol. Chem. 278, 1626–1633 (2003).
    Article CAS Google Scholar
  15. Garg, P., Stith, C.M., Sabouri, N., Johansson, E. & Burgers, P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18, 2764–2773 (2004).
    Article CAS Google Scholar
  16. Hamatake, R.K. et al. Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. Identification of the catalytic core and a possible holoenzyme form of the enzyme. J. Biol. Chem. 265, 4072–4083 (1990).
    CAS PubMed Google Scholar
  17. Morrison, A., Bell, J.B., Kunkel, T.A. & Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3′—-5′ exonuclease activity. Proc. Natl. Acad. Sci. USA 88, 9473–9477 (1991).
    Article CAS Google Scholar
  18. Navas, T.A., Zhou, Z. & Elledge, S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80, 29–39 (1995).
    Article CAS Google Scholar
  19. Kesti, T., Flick, K., Keranen, S., Syvaoja, J.E. & Wittenberg, C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3, 679–685 (1999).
    Article CAS Google Scholar
  20. Kesti, T., McDonald, W.H., Yates, J.R. III & Wittenberg, C. Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J. Biol. Chem. 279, 14245–14255 (2004).
    Article CAS Google Scholar
  21. Araki, H., Hamatake, R.K., Johnston, L.H. & Sugino, A. DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 4601–4605 (1991).
    Article CAS Google Scholar
  22. Araki, H. et al. Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res. 19, 4867–4872 (1991).
    Article CAS Google Scholar
  23. Ohya, T., Maki, S., Kawasaki, Y. & Sugino, A. Structure and function of the fourth subunit (Dpb4p) of DNA polymerase epsilon in Saccharomyces cerevisiae. Nucleic Acids Res. 28, 3846–3852 (2000).
    Article CAS Google Scholar
  24. Li, Y., Pursell, Z.F. & Linn, S. Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J. Biol. Chem. 275, 23247–23252 (2000).
    Article CAS Google Scholar
  25. Iida, T. & Araki, H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 217–227 (2004).
    Article CAS Google Scholar
  26. Tsubota, T., Maki, S., Kubota, H., Sugino, A. & Maki, H. Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8, 873–888 (2003).
    Article CAS Google Scholar
  27. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies 342 (Academic Press, San Diego, USA, 1996).
  28. Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).
    Article CAS Google Scholar
  29. van Heel, M. Similarity measures between images. Ultramicroscopy 21, 95–100 (1987).
    Article Google Scholar
  30. Penczek, P., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).
    Article CAS Google Scholar
  31. Dua, R., Edwards, S., Levy, D.L. & Campbell, J.L. Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) complex. Demonstration of a dimeric pol epsilon. J. Biol. Chem. 275, 28816–28825 (2000).
    Article CAS Google Scholar
  32. Kokoska, R.J., McCulloch, S.D. & Kunkel, T.A. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. J. Biol. Chem. 278, 50537–50545 (2003).
    Article CAS Google Scholar
  33. McCulloch, S.D. et al. Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res. 32, 4665–4675 (2004).
    Article CAS Google Scholar
  34. Creighton, S. & Goodman, M.F. Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J. Biol. Chem. 270, 4759–4774 (1995).
    Article CAS Google Scholar
  35. Creighton, S., Bloom, L.B. & Goodman, M.F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 262, 232–256 (1995).
    Article CAS Google Scholar
  36. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).
    Article CAS Google Scholar
  37. Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J. & Knight, P.J. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147, 247–258 (2004).
    Article CAS Google Scholar
  38. Cramer, P. Common structural features of nucleic acid polymerases. Bioessays 24, 724–729 (2002).
    Article CAS Google Scholar
  39. Burgers, P.M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J. Biol. Chem. 266, 22698–22706 (1991).
    CAS PubMed Google Scholar
  40. Fuss, J. & Linn, S. Human DNA polymerase epsilon colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J. Biol. Chem. 277, 8658–8666 (2002).
    Article CAS Google Scholar
  41. Wang, J. et al. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89, 1087–1099 (1997).
    Article CAS Google Scholar
  42. Bowman, G.D., O'Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429, 724–730 (2004).
    Article CAS Google Scholar
  43. Tischendorf, G.W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 5oS ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134, 187–208 (1974).
    Article CAS Google Scholar
  44. Stoffler, G. & Stoffler-Meilicke, M. The ultrastructure of macromolecular complexes studied with antibodies. in Modern Methods in Protein Chemistry (ed. Tesche, H.) 409–455 (De Gruyter, Berlin, 1983).
    Google Scholar
  45. Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).
    Article CAS Google Scholar

Download references