Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo–electron microscopy (original) (raw)
References
Shcherbakova, P.V., Bebenek, K. & Kunkel, T.A. Functions of eukaryotic DNA polymerases. Sci. Aging Knowledge Environ. [online]2003, RE3 (2003). Google Scholar
Bebenek, K. & Kunkel, T.A. Functions of DNA polymerases. Adv. Protein Chem.69, 137–165 (2004). ArticleCAS Google Scholar
Brautigam, C.A. & Steitz, T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Opin. Struct. Biol.8, 54–63 (1998). ArticleCAS Google Scholar
Waga, S., Masuda, T., Takisawa, H. & Sugino, A. DNA polymerase epsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts. Proc. Natl. Acad. Sci. USA98, 4978–4983 (2001). ArticleCAS Google Scholar
Fukui, T. et al. Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells9, 179–191 (2004). ArticleCAS Google Scholar
Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol.20, 2809–2817 (2000). ArticleCAS Google Scholar
Aparicio, O.M., Weinstein, D.M. & Bell, S.P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell91, 59–69 (1997). ArticleCAS Google Scholar
Shcherbakova, P.V. & Pavlov, Y.I. 3′ → 5′ exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics142, 717–726 (1996). CASPubMedPubMed Central Google Scholar
Karthikeyan, R. et al. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J. Mol. Biol.299, 405–419 (2000). ArticleCAS Google Scholar
Chilkova, O., Jonsson, B.H. & Johansson, E. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J. Biol. Chem.278, 14082–14086 (2003). ArticleCAS Google Scholar
Johansson, E., Majka, J. & Burgers, P.M. Structure of DNA polymerase delta from Saccharomyces cerevisiae. J. Biol. Chem.276, 43824–43828 (2001). ArticleCAS Google Scholar
Jin, Y.H. et al. The 3′ → 5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA98, 5122–5127 (2001). ArticleCAS Google Scholar
Ayyagari, R., Gomes, X.V., Gordenin, D.A. & Burgers, P.M. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem.278, 1618–1625 (2003). ArticleCAS Google Scholar
Jin, Y.H., Ayyagari, R., Resnick, M.A., Gordenin, D.A. & Burgers, P.M. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol delta in the creation of a ligatable nick. J. Biol. Chem.278, 1626–1633 (2003). ArticleCAS Google Scholar
Garg, P., Stith, C.M., Sabouri, N., Johansson, E. & Burgers, P.M. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev.18, 2764–2773 (2004). ArticleCAS Google Scholar
Hamatake, R.K. et al. Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. Identification of the catalytic core and a possible holoenzyme form of the enzyme. J. Biol. Chem.265, 4072–4083 (1990). CASPubMed Google Scholar
Morrison, A., Bell, J.B., Kunkel, T.A. & Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3′—-5′ exonuclease activity. Proc. Natl. Acad. Sci. USA88, 9473–9477 (1991). ArticleCAS Google Scholar
Navas, T.A., Zhou, Z. & Elledge, S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell80, 29–39 (1995). ArticleCAS Google Scholar
Kesti, T., Flick, K., Keranen, S., Syvaoja, J.E. & Wittenberg, C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell3, 679–685 (1999). ArticleCAS Google Scholar
Kesti, T., McDonald, W.H., Yates, J.R. III & Wittenberg, C. Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J. Biol. Chem.279, 14245–14255 (2004). ArticleCAS Google Scholar
Araki, H., Hamatake, R.K., Johnston, L.H. & Sugino, A. DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA88, 4601–4605 (1991). ArticleCAS Google Scholar
Araki, H. et al. Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res.19, 4867–4872 (1991). ArticleCAS Google Scholar
Ohya, T., Maki, S., Kawasaki, Y. & Sugino, A. Structure and function of the fourth subunit (Dpb4p) of DNA polymerase epsilon in Saccharomyces cerevisiae. Nucleic Acids Res.28, 3846–3852 (2000). ArticleCAS Google Scholar
Li, Y., Pursell, Z.F. & Linn, S. Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J. Biol. Chem.275, 23247–23252 (2000). ArticleCAS Google Scholar
Iida, T. & Araki, H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol.24, 217–227 (2004). ArticleCAS Google Scholar
Tsubota, T., Maki, S., Kubota, H., Sugino, A. & Maki, H. Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells8, 873–888 (2003). ArticleCAS Google Scholar
Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies 342 (Academic Press, San Diego, USA, 1996).
Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech.9, 359–394 (1988). ArticleCAS Google Scholar
van Heel, M. Similarity measures between images. Ultramicroscopy21, 95–100 (1987). Article Google Scholar
Penczek, P., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy53, 251–270 (1994). ArticleCAS Google Scholar
Dua, R., Edwards, S., Levy, D.L. & Campbell, J.L. Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) complex. Demonstration of a dimeric pol epsilon. J. Biol. Chem.275, 28816–28825 (2000). ArticleCAS Google Scholar
Kokoska, R.J., McCulloch, S.D. & Kunkel, T.A. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase eta and Sulfolobus solfataricus Dpo4. J. Biol. Chem.278, 50537–50545 (2003). ArticleCAS Google Scholar
McCulloch, S.D. et al. Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res.32, 4665–4675 (2004). ArticleCAS Google Scholar
Creighton, S. & Goodman, M.F. Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J. Biol. Chem.270, 4759–4774 (1995). ArticleCAS Google Scholar
Creighton, S., Bloom, L.B. & Goodman, M.F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol.262, 232–256 (1995). ArticleCAS Google Scholar
Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature421, 715–718 (2003). ArticleCAS Google Scholar
Burgess, S.A., Walker, M.L., Thirumurugan, K., Trinick, J. & Knight, P.J. Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol.147, 247–258 (2004). ArticleCAS Google Scholar
Cramer, P. Common structural features of nucleic acid polymerases. Bioessays24, 724–729 (2002). ArticleCAS Google Scholar
Burgers, P.M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J. Biol. Chem.266, 22698–22706 (1991). CASPubMed Google Scholar
Fuss, J. & Linn, S. Human DNA polymerase epsilon colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J. Biol. Chem.277, 8658–8666 (2002). ArticleCAS Google Scholar
Wang, J. et al. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell89, 1087–1099 (1997). ArticleCAS Google Scholar
Bowman, G.D., O'Donnell, M. & Kuriyan, J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature429, 724–730 (2004). ArticleCAS Google Scholar
Tischendorf, G.W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 5oS ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet.134, 187–208 (1974). ArticleCAS Google Scholar
Stoffler, G. & Stoffler-Meilicke, M. The ultrastructure of macromolecular complexes studied with antibodies. in Modern Methods in Protein Chemistry (ed. Tesche, H.) 409–455 (De Gruyter, Berlin, 1983). Google Scholar
Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr.50, 869–873 (1994). ArticleCAS Google Scholar