Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D28K (original) (raw)
Gross, M. & Kumar, R. Physiology and biochemistry of vitamin D-dependent calcium binding proteins. Am. J. Physiol.259, F195–F209 (1990). CASPubMed Google Scholar
Oberholtzer, J.C., Buettger, C., Summers, M.C. & Matschinsky, F.M. The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. Proc. Natl. Acad. Sci. USA85, 3387–3390 (1988). ArticleCAS Google Scholar
Lutz, W. et al. Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy. Biochem. Biophys. Res. Commun.303, 1186–1192 (2003). ArticleCAS Google Scholar
Berggard, T., Szczepankiewicz, O., Thulin, E. & Linse, S. Myo-inositol monophosphatase is an activated target of calbindin D28K . J. Biol. Chem.277, 41954–41959 (2002). ArticleCAS Google Scholar
Christakos, S. & Liu, Y. Biological actions and mechanism of action of calbindin in the process of apoptosis. J. Steroid Biochem. Mol. Biol.89–90, 401–404 (2004). Article Google Scholar
Berggard, T., Thulin, E., Akerfeldt, K.S. & Linse, S. Fragment complementation of calbindin D28K . Protein Sci.9, 2094–2108 (2000). ArticleCAS Google Scholar
Linse, S. et al. Domain organization of calbindin D28K as determined from the association of six synthetic EF-hand fragments. Protein Sci.6, 2385–2396 (1997). ArticleCAS Google Scholar
Bellido, T., Huening, M., Raval-Pandya, M., Manolagas, S.C. & Christakos, S. Calbindin D28K is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J. Biol. Chem.275, 26328–26332 (2000). ArticleCAS Google Scholar
Rabinovitch, A., Suarez-Pinzon, W.L., Sooy, K., Strynadka, K. & Christakos, S. Expression of calbindin- D28K in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology142, 3649–3655 (2001). ArticleCAS Google Scholar
Liu, Y. et al. Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin- D28K . J. Bone Miner. Res.19, 479–490 (2004). ArticleCAS Google Scholar
Christakos, S. et al. Vitamin D target proteins: function and regulation. J. Cell. Biochem.88, 238–244 (2003). ArticleCAS Google Scholar
Shamir, A., Elhadad, N., Belmaker, R.H. & Agam, G. Interaction of calbindin D28K and inositol monophosphatase in human postmortem cortex: possible implications for bipolar disorder. Bipolar Disord.7, 42–48 (2005). ArticleCAS Google Scholar
Schmidt, H., Schwaller, B. & Eilers, J. Calbindin D28K targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA102, 5850–5855 (2005). ArticleCAS Google Scholar
Venters, R.A. et al. The effects of Ca2+ binding on the conformation of calbindin D28K: a nuclear magnetic resonance and microelectrospray mass spectrometry study. Anal. Biochem.317, 59–66 (2003). ArticleCAS Google Scholar
Morgan, D.W., Welton, A.F., Heick, A.E. & Christakos, S. Specific in vitro activation of Ca,Mg-ATPase by vitamin D-dependent rat renal calcium binding protein (calbindin D28K). Biochem. Biophys. Res. Commun.138, 547–553 (1986). ArticleCAS Google Scholar
Reisner, P.D., Christakos, S. & Vanaman, T.C. In vitro enzyme activation with calbindin- D28K, the vitamin D-dependent 28 kDa calcium binding protein. FEBS Lett.297, 127–131 (1992). ArticleCAS Google Scholar
Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci.21, 14–17 (1996). ArticleCAS Google Scholar
Nakamura, M. et al. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to gamma-tubulin. J. Cell Biol.143, 1041–1052 (1998). ArticleCAS Google Scholar
Nishimoto, T. A new role of ran GTPase. Biochem. Biophys. Res. Commun.262, 571–574 (1999). ArticleCAS Google Scholar
Nishitani, H. et al. Full-sized RanBPM cDNA encodes a protein possessing a long stretch of proline and glutamine within the N-terminal region, comprising a large protein complex. Gene272, 25–33 (2001). ArticleCAS Google Scholar
Rao, M.A. et al. RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J. Biol. Chem.277, 48020–48027 (2002). ArticleCAS Google Scholar
Seki, T., Hayashi, N. & Nishimoto, T. RCC1 in the Ran pathway. J. Biochem.120, 207–214 (1996). ArticleCAS Google Scholar
Moore, M.S. Generation of GTP-Ran for nuclear protein import. Science272, 47 (1996). ArticleCAS Google Scholar
Cotman, C.W., Poon, W.W., Rissman, R.A. & Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol.64, 104–112 (2005). ArticleCAS Google Scholar
Hodges, A. et al. Regional and cellular gene expression changes in human Huntington's disease brain. Hum. Mol. Genet.15, 965–977 (2006). ArticleCAS Google Scholar
Wellington, C.L. et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J. Biol. Chem.275, 19831–19838 (2000). ArticleCAS Google Scholar
Yuan, J. & Yankner, B.A. Apoptosis in the nervous system. Nature407, 802–809 (2000). ArticleCAS Google Scholar
Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature429, 883–891 (2004). ArticleCAS Google Scholar
Colin, E. et al. Akt is altered in an animal model of Huntington's disease and in patients. Eur. J. Neurosci.21, 1478–1488 (2005). Article Google Scholar
Berggard, T., Silow, M., Thulin, E. & Linse, S. Ca2+- and H+-dependent conformational changes of calbindin D28K . Biochemistry39, 6864–6873 (2000). ArticleCAS Google Scholar
Cedervall, T. et al. Calbindin D28K EF-hand ligand binding and oligomerization: four high-affinity sites-three modes of action. Biochemistry44, 13522–13532 (2005). ArticleCAS Google Scholar
Berggard, T. et al. Calbindin D28K exhibits properties characteristic of a Ca2+ sensor. J. Biol. Chem.277, 16662–16672 (2002). ArticleCAS Google Scholar
Veenstra, T.D., Johnson, K.L., Tomlinson, A.J., Naylor, S. & Kumar, R. Determination of calcium-binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry. Biochemistry36, 3535–3542 (1997). ArticleCAS Google Scholar
Vanbelle, C. et al. Deamidation and disulfide bridge formation in human calbindin D28K with effects on calcium binding. Protein Sci.14, 968–979 (2005). ArticleCAS Google Scholar
Cedervall, T. et al. Redox sensitive cysteine residues in calbindin D28K are structurally and functionally important. Biochemistry44, 684–693 (2005). ArticleCAS Google Scholar
Johnson, K.L. et al. On-line sample clean-up and chromatography coupled with electrospray ionization mass spectrometry to characterize the primary sequence and disulfide bond content of recombinant calcium binding proteins. Biomed. Chromatogr.13, 37–45 (1999). ArticleCAS Google Scholar
Tao, L., Murphy, M.E. & English, A.M. S-nitrosation of Ca2+-loaded and Ca2+-free recombinant calbindin D28K from human brain. Biochemistry41, 6185–6192 (2002). ArticleCAS Google Scholar
Nelson, M.R. & Chazin, W.J. Structures of EF-hand Ca2+-binding proteins: diversity in the organization, packing and response to Ca2+ binding. Biometals11, 297–318 (1998). ArticleCAS Google Scholar
Klaus, W. et al. NMR investigation and secondary structure of domains I and II of rat brain calbindin D28K (1–93). Eur. J. Biochem.262, 933–938 (1999). ArticleCAS Google Scholar
Mueller, G.A. et al. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J. Mol. Biol.300, 197–212 (2000). ArticleCAS Google Scholar
Atreya, H.S. & Chary, K.V.R. New chemical shift signatures of bound calcium in EF-hand proteins. Curr. Sci. [online]83, 1240–1245 (2002). CAS Google Scholar
Biekofsky, R.R., Turjanski, A.G., Estrin, D.A., Feeney, J. & Pastore, A. Ab initio study of NMR 15N chemical shift differences induced by Ca2+ binding to EF-hand proteins. Biochemistry43, 6554–6564 (2004). ArticleCAS Google Scholar
Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins50, 496–506 (2003). ArticleCAS Google Scholar
Rigden, D.J. & Galperin, M.Y. The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. J. Mol. Biol.343, 971–984 (2004). ArticleCAS Google Scholar
Akerfeldt, K.S., Coyne, A.N., Wilk, R.R., Thulin, E. & Linse, S. Ca2+-binding stoichiometry of calbindin D28K as assessed by spectroscopic analyses of synthetic peptide fragments. Biochemistry35, 3662–3669 (1996). ArticleCAS Google Scholar
Donepudi, M. & Grutter, M.G. Structure and zymogen activation of caspases. Biophys. Chem.101–102, 145–153 (2002). Article Google Scholar
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR6, 277–293 (1995). ArticleCAS Google Scholar
Johnson, B.A. & Blevins, R.A. NMRView—a computer program for the visualization and analysis of NMR data. J. Biomol. NMR4, 603–614 (1994). ArticleCAS Google Scholar
Helgstrand, M., Vanbelle, C., Thulin, E., Linse, S. & Akke, M. Sequential 1H, 15N and 13C NMR assignment of human calbindin D28K . J. Biomol. NMR28, 305–306 (2004). ArticleCAS Google Scholar
Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR13, 289–302 (1999). ArticleCAS Google Scholar
Yang, D., Venters, R.A., Mueller, G.A., Choy, W.Y. & Kay, L.E. TROSY-based HNCO pulse sequences for the measurement of 1HN-15N, 15N-13CO, 1HN-13CO, 13CO-13Cα and 1HN-13Cα dipolar couplings in 15N, 13C, 2H-labeled proteins. J. Biomol. NMR14, 333–343 (1999). Article Google Scholar
Wang, Y.X. et al. Measurement of 3hJNC' connectivities across hydrogen bonds in a 30 kDa protein. J. Biomol. NMR14, 181–184 (1999). ArticleCAS Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar
Stein, E.G., Rice, L.M. & Brunger, A.T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson.124, 154–164 (1997). ArticleCAS Google Scholar
Choy, W.Y., Tollinger, M., Mueller, G.A. & Kay, L.E. Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. J. Biomol. NMR21, 31–40 (2001). ArticleCAS Google Scholar
Nabuurs, S.B. et al. Quantitative evaluation of experimental NMR restraints. J. Am. Chem. Soc.125, 12026–12034 (2003). ArticleCAS Google Scholar
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8, 477–486 (1996). ArticleCAS Google Scholar
Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res.32, W615–W619 (2004). ArticleCAS Google Scholar
Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res.31, 3320–3323 (2003). ArticleCAS Google Scholar