Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration (original) (raw)
References
Wilson, C., Connolly, T., Morrison, T. & Gilmore, R. Integration of membrane proteins into the endoplasmic reticulum requires GTP. J. Cell Biol.107, 69–77 (1988). ArticleCAS Google Scholar
Do, H., Falcone, D., Lin, J., Andrews, D.W. & Johnson, A.E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell85, 369–378 (1996). ArticleCAS Google Scholar
Heinrich, S.U., Mothes, W., Brunner, J. & Rapoport, T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell102, 233–244 (2000). ArticleCAS Google Scholar
Beltzer, J.P. et al. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence. J. Biol. Chem.266, 973–978 (1991). CASPubMed Google Scholar
Hartmann, E., Rapoport, T.A. & Lodish, H.F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA86, 5786–5790 (1989). ArticleCAS Google Scholar
Wahlberg, J.M. & Spiess, M. Multiple determinants direct the orientation of signal-anchor proteins: the topogenic role of the hydrophobic signal domain. J. Cell Biol.137, 555–562 (1997). ArticleCAS Google Scholar
Denzer, A.J., Nabholz, C.E. & Spiess, M. Transmembrane orientation of signal anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J.14, 6311–6317 (1995). ArticleCAS Google Scholar
Mothes, W. et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell89, 523–533 (1997). ArticleCAS Google Scholar
Heinrich, S.U. & Rapoport, T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J.22, 3654–3663 (2003). ArticleCAS Google Scholar
McCormick, P.J., Miao, Y., Shao, Y., Lin, J. & Johnson, A.E. Cotranslational protein integration into the ER membrane is mediated by the binding of nascent chains to translocon proteins. Mol. Cell12, 329–341 (2003). ArticleCAS Google Scholar
Sadlish, H., Pitonzo, D., Johnson, A.E. & Skach, W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol.12, 870–878 (2005). ArticleCAS Google Scholar
Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell90, 31–41 (1997). ArticleCAS Google Scholar
Haigh, N.G. & Johnson, A.E. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J. Cell Biol.156, 261–270 (2002). ArticleCAS Google Scholar
Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell116, 725–736 (2004). ArticleCAS Google Scholar
Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J. & Rapoport, T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell94, 795–807 (1998). ArticleCAS Google Scholar
Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature427, 36–44 (2004). ArticleCAS Google Scholar
Rapoport, T.A., Goder, V., Heinrich, S.U. & Matlack, K.E. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol.14, 568–575 (2004). ArticleCAS Google Scholar
Morgan, D.G., Menetret, J.F., Neuhof, A., Rapoport, T.A. & Akey, C.W. Structure of the mammalian ribosome-channel complex at 17 Å resolution. J. Mol. Biol.324, 871–886 (2002). ArticleCAS Google Scholar
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell107, 361–372 (2001). ArticleCAS Google Scholar
Johnsson, N. & Varshavsky, A. Ubiquitin-assisted dissection of protein transport across membranes. EMBO J.13, 2686–2698 (1994). ArticleCAS Google Scholar
Ng, D.T., Brown, J.D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum. J. Cell Biol.134, 269–278 (1996). ArticleCAS Google Scholar
Mason, N., Ciufo, L.F. & Brown, J.D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J.19, 4164–4174 (2000). ArticleCAS Google Scholar
Jungnickel, B. & Rapoport, T.A. A posttranslational signal sequence recognition event in the endoplasmic reticulum membrane. Cell82, 261–270 (1995). ArticleCAS Google Scholar
Belin, D., Bost, S., Vassalli, J.D. & Strub, K. A two-step recognition of signal sequences determines the translocation efficiency of proteins. EMBO J.15, 468–478 (1996). ArticleCAS Google Scholar
Goder, V. & Spiess, M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J.22, 3645–3653 (2003). ArticleCAS Google Scholar
Ogg, S.C., Barz, W.P. & Walter, P. A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor β-subunit. J. Cell Biol.142, 341–354 (1998). ArticleCAS Google Scholar
Cheng, Z., Jiang, Y., Mandon, E.C. & Gilmore, R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J. Cell Biol.168, 67–77 (2005). ArticleCAS Google Scholar
Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA91, 10340–10344 (1994). ArticleCAS Google Scholar
Goder, V., Crottet, P. & Spiess, M. In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO J.19, 6704–6712 (2000). ArticleCAS Google Scholar
Connolly, T., Collins, P. & Gilmore, R. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J. Cell Biol.108, 299–307 (1989). ArticleCAS Google Scholar
Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell73, 1101–1115 (1993). ArticleCAS Google Scholar
Braakman, I., Hoover-Litty, H., Wagner, K.R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol.114, 401–411 (1991). ArticleCAS Google Scholar
Hershey, J.W. Translational control in mammalian cells. Annu. Rev. Biochem.60, 717–755 (1991). ArticleCAS Google Scholar
Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. Cell78, 461–471 (1994). ArticleCAS Google Scholar
Buck, T.M. & Skach, W.R. Differential stability of biogenesis intermediates reveals a common pathway for aquaporin-1 topological maturation. J. Biol. Chem.280, 261–269 (2005). ArticleCAS Google Scholar
Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature433, 377–381 (2005). ArticleCAS Google Scholar
Green, N. & Walter, P. C-terminal sequences can inhibit the insertion of membrane proteins into the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Cell. Biol.12, 276–282 (1992). ArticleCAS Google Scholar
Kim, H., Melen, K. & von Heijne, G. Topology models for 37 Saccharomyces cerevisiae membrane proteins based on C-terminal reporter fusions and predictions. J. Biol. Chem.278, 10208–10213 (2003). ArticleCAS Google Scholar
Rothblatt, J. & Schekman, R. A hitchhiker's guide to the analysis of the secretory pathway in yeast. Methods Cell Biol.32, 3–36 (1989). ArticleCAS Google Scholar