Structure of the ribosome-bound cricket paralysis virus IRES RNA (original) (raw)
Sonenberg, N. & Dever, T.E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol.13, 56–63 (2003). ArticleCAS Google Scholar
Dever, T.E. Gene-specific regulation by general translation factors. Cell108, 545–556 (2002). ArticleCAS Google Scholar
Hellen, C.U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev.15, 1593–1612 (2001). ArticleCAS Google Scholar
Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES: attracting the translation machinery to internal ribosome entry sites. EMBO Rep.2, 893–898 (2001). ArticleCAS Google Scholar
Stoneley, M. & Willis, A.E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene23, 3200–3207 (2004). ArticleCAS Google Scholar
Jackson, R.J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans.33, 1231–1241 (2005). ArticleCAS Google Scholar
Sasaki, J. & Nakashima, N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc. Natl. Acad. Sci. USA97, 1512–1515 (2000). ArticleCAS Google Scholar
Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev.17, 181–186 (2003). ArticleCAS Google Scholar
Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell102, 511–520 (2000). ArticleCAS Google Scholar
Jan, E., Goss Kinzy, T. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation and termination of protein biosynthesis. Proc. Natl. Acad. Sci. USA100, 15410–15415 (2003). ArticleCAS Google Scholar
Spahn, C.M.T. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science291, 1962 (2001). Article Google Scholar
Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell118, 465–475 (2004). ArticleCAS Google Scholar
Thompson, S.R., Gulyas, K.D. & Sarnow, P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc. Natl. Acad. Sci. USA98, 12972–12977 (2001). ArticleCAS Google Scholar
Halic, M., Becker, T., Frank, J., Spahn, C.M. & Beckmann, R. Localization and dynamic behavior of ribosomal protein L30e. Nat. Struct. Mol. Biol.12, 467–468 (2005). ArticleCAS Google Scholar
Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J.23, 1008–1019 (2004). ArticleCAS Google Scholar
Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol.324, 889–902 (2002). ArticleCAS Google Scholar
Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res.31, 2434–2442 (2003). ArticleCAS Google Scholar
Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA7, 266–274 (2001). ArticleCAS Google Scholar
Pestova, T.V., Lomakin, I.B. & Hellen, C.U. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep.5, 906–913 (2004). ArticleCAS Google Scholar
Hilbers, C.W., Michiels, P.J. & Heus, H.A. New developments in structure determination of pseudoknots. Biopolymers48, 137–153 (1998). ArticleCAS Google Scholar
Su, L., Chen, L., Egli, M., Berger, J.M. & Rich, A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat. Struct. Biol.6, 285–292 (1999). ArticleCAS Google Scholar
Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA99, 11676–11681 (2002). ArticleCAS Google Scholar
Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA98, 4899–4903 (2001). ArticleCAS Google Scholar
Costantino, D. & Kieft, J.S. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA11, 332–343 (2005). ArticleCAS Google Scholar
Theimer, C.A., Blois, C.A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell17, 671–682 (2005). ArticleCAS Google Scholar
Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science292, 883–896 (2001). ArticleCAS Google Scholar
Spahn, C.M.T. et al. Structure of the 80S ribosome from _Saccharomyces cerevisiae_—tRNA-ribosome and subunit-subunit interactions. Cell107, 373–386 (2001). ArticleCAS Google Scholar
Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell107, 679–688 (2001). ArticleCAS Google Scholar
Valle, M. et al. Locking and unlocking of ribosomal motions. Cell114, 123–134 (2003). ArticleCAS Google Scholar
Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science289, 905–920 (2000). ArticleCAS Google Scholar
Bottcher, B., Wynne, S.A. & Crowther, R.A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature386, 88–91 (1997). ArticleCAS Google Scholar
Chiu, W., Baker, M.L., Jiang, W., Dougherty, M. & Schmid, M.F. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure13, 363–372 (2005). ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCAS Google Scholar
Massire, C. & Westhof, E. MANIP: an interactive tool for modelling RNA. J. Mol. Graph. Model.16, 197–205 255–7 (1998). ArticleCAS Google Scholar
Jones, T.A. & Kjeldgaard, M. Electron density map interpretation. Methods Enzymol.277B, 173–207 (1997). Article Google Scholar