Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry (original) (raw)
Brown, M.S., Ye, J., Rawson, R.B. & Goldstein, J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). ArticleCAS Google Scholar
Urban, S. & Freeman, M. Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr. Opin. Genet. Dev.12, 512–518 (2002). ArticleCAS Google Scholar
Wolfe, M.S. & Kopan, R. Intramembrane proteolysis: theme and variations. Science305, 1119–1123 (2004). ArticleCAS Google Scholar
Ebinu, J.O. & Yankner, B.A.A. RIP tide in neuronal signal transduction. Neuron34, 499–502 (2002). ArticleCAS Google Scholar
Ehrmann, M. & Clausen, T. Proteolysis as a regulatory mechanism. Annu. Rev. Genet.38, 709–724 (2004). ArticleCAS Google Scholar
Rawson, R.B. Regulated intramembrane proteolysis: from the endoplasmic reticulum to the nucleus. Essays Biochem.38, 155–168 (2002). ArticleCAS Google Scholar
Brown, M.S. & Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997). ArticleCAS Google Scholar
Rawson, R.B. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell1, 47–57 (1997). ArticleCAS Google Scholar
Mattson, M.P. Pathways towards and away from Alzheimer's disease. Nature430, 631–639 (2004). ArticleCAS Google Scholar
Xia, W. & Wolfe, M.S. Intramembrane proteolysis by presenilin and presenilin-like proteases. J. Cell Sci.116, 2839–2844 (2003). ArticleCAS Google Scholar
Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell107, 173–182 (2001). ArticleCAS Google Scholar
Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J.21, 4277–4286 (2002). ArticleCAS Google Scholar
Wasserman, J.D., Urban, S. & Freeman, M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev.14, 1651–1663 (2000). CASPubMedPubMed Central Google Scholar
Lee, J.R., Urban, S., Garvey, C. & Freeman, M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell107, 161–171 (2001). ArticleCAS Google Scholar
Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell126, 163–175 (2006). ArticleCAS Google Scholar
Pellegrini, L. et al. PAMP and PARL, two novel putative metalloproteases interacting with the COOH-terminus of Presenilin-1 and -2. J. Alzheimers Dis.3, 181–190 (2001). ArticleCAS Google Scholar
Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J.25, 2966–2977 (2006). ArticleCAS Google Scholar
McQuibban, G.A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature423, 537–541 (2003). ArticleCAS Google Scholar
Brossier, F., Jewett, T.J., Sibley, L.D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA102, 4146–4151 (2005). ArticleCAS Google Scholar
Gallio, M., Sturgill, G., Rather, P. & Kylsten, P. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc. Natl. Acad. Sci. USA99, 12208–12213 (2002). ArticleCAS Google Scholar
Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry44, 13543–13552 (2005). ArticleCAS Google Scholar
Lemberg, M.K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J.24, 464–472 (2005). ArticleCAS Google Scholar
Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA102, 1883–1888 (2005). ArticleCAS Google Scholar
Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature, advance online publication 11 October 2006 (doi:10.1038/nature05255).
Koonin, E.V. et al. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol.4, R19 (2003). Article Google Scholar
Daley, D.O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science308, 1321–1323 (2005). ArticleCAS Google Scholar
O'Donnell, R.A. et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J. Cell Biol.174, 1023–1033 (2006). ArticleCAS Google Scholar
Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics3, 565–576 (2004). ArticleCAS Google Scholar
Opitz, C. et al. Intramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii. EMBO J.21, 1577–1585 (2002). ArticleCAS Google Scholar
Urban, S. & Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell11, 1425–1434 (2003). ArticleCAS Google Scholar
Howell, S.A. et al. Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol. Microbiol.57, 1342–1356 (2005). ArticleCAS Google Scholar
van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature427, 36–44 (2004). ArticleCAS Google Scholar
Lazarov, V.K. et al. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. Proc. Natl. Acad. Sci. USA103, 6889–6894 (2006). ArticleCAS Google Scholar
Ogura, T. et al. Three-dimensional structure of the gamma-secretase complex. Biochem. Biophys. Res. Commun.343, 525–534 (2006). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr.61, 458–464 (2005). Article Google Scholar
Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar
Chen, F. et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science287, 1485–1489 (2000). ArticleCAS Google Scholar
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet.11, 281–296 (1991). ArticleCAS Google Scholar
Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst.24, 946–950 (1991). Article Google Scholar