Structural basis for autoinhibition of Notch (original) (raw)
Bray, S.J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol.7, 678–689 (2006). ArticleCAS Google Scholar
Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004). ArticleCAS Google Scholar
Blaumueller, C.M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell90, 281–291 (1997). ArticleCAS Google Scholar
Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA95, 8108–8112 (1998). ArticleCAS Google Scholar
Sanchez-Irizarry, C. et al. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol. Cell. Biol.24, 9265–9273 (2004). ArticleCAS Google Scholar
Fehon, R.G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell61, 523–534 (1990). ArticleCAS Google Scholar
Weinmaster, G. The ins and outs of notch signaling. Mol. Cell. Neurosci.9, 91–102 (1997). ArticleCAS Google Scholar
Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell5, 207–216 (2000). ArticleCAS Google Scholar
Mumm, J.S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell5, 197–206 (2000). ArticleCAS Google Scholar
Kopan, R. & Goate, A. A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev.14, 2799–2806 (2000). ArticleCAS Google Scholar
Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature393, 382–386 (1998). ArticleCAS Google Scholar
Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell93, 649–660 (1998). ArticleCAS Google Scholar
Struhl, G., Fitzgerald, K. & Greenwald, I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell74, 331–345 (1993). ArticleCAS Google Scholar
Kopan, R., Schroeter, E.H., Weintraub, H. & Nye, J.S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA93, 1683–1688 (1996). ArticleCAS Google Scholar
Lieber, T., Kidd, S., Alcamo, E., Corbin, V. & Young, M.W. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev.7, 1949–1965 (1993). ArticleCAS Google Scholar
Rebay, I., Fehon, R.G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell74, 319–329 (1993). ArticleCAS Google Scholar
Berry, L.W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development124, 925–936 (1997). CASPubMed Google Scholar
Greenwald, I. & Seydoux, G. Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature346, 197–199 (1990). ArticleCAS Google Scholar
Vardar, D., North, C.L., Sanchez-Irizarry, C., Aster, J.C. & Blacklow, S.C. Nuclear magnetic resonance structure of a prototype Lin12-Notch repeat module from human Notch1. Biochemistry42, 7061–7067 (2003). ArticleCAS Google Scholar
Holm, L. & Sander, C. Mapping the protein universe. Science273, 595–603 (1996). ArticleCAS Google Scholar
Maeda, T. et al. Solution structure of the SEA Domain from the murine homologue of ovarian cancer antigen CA125 (MUC16). J. Biol. Chem.279, 13174–13182 (2004). ArticleCAS Google Scholar
Macao, B., Johansson, D.G.A., Hansson, G.C. & Hard, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol.13, 71–76 (2006). ArticleCAS Google Scholar
Mumm, J.S. & Kopan, R. Notch signaling: from the outside in. Dev. Biol.228, 151–165 (2000). ArticleCAS Google Scholar
Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell4, 67–82 (2003). ArticleCAS Google Scholar
Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development132, 1751–1762 (2005). ArticleCAS Google Scholar
Wang, W. & Struhl, G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development131, 5367–5380 (2004). ArticleCAS Google Scholar
Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development132, 2883–2894 (2005). ArticleCAS Google Scholar
Bingham, S. et al. Neurogenic phenotype of mind bomb mutants leads to severe patterning defects in the zebrafish hindbrain. Dev. Dyn.228, 451–463 (2003). ArticleCAS Google Scholar
Lai, E.C., Roegiers, F., Qin, X., Jan, Y.N. & Rubin, G.M. The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development132, 2319–2332 (2005). ArticleCAS Google Scholar
Le Borgne, R., Remaud, S., Hamel, S. & Schweisguth, F. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila. PLoS Biol.3, 688–696 (2005). ArticleCAS Google Scholar
Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell5, 139–148 (2003). ArticleCAS Google Scholar
Pavlopoulos, E. et al. neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev. Cell1, 807–816 (2001). ArticleCAS Google Scholar
Seugnet, L., Simpson, P. & Haenlin, M. Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol.192, 585–598 (1997). ArticleCAS Google Scholar
Parks, A.L., Klueg, K.M., Stout, J.R. & Muskavitch, M.A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development127, 1373–1385 (2000). CASPubMed Google Scholar
Ahimou, F., Mok, L.P., Bardot, B. & Wesley, C. The adhesion force of Notch with Delta and the rate of Notch signaling. J. Cell Biol.167, 1217–1229 (2004). ArticleCAS Google Scholar
Maskos, K. et al. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad. Sci. USA95, 3408–3412 (1998). ArticleCAS Google Scholar
Sun, X. & Artavanis-Tsakonas, S. Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development124, 3439–3448 (1997). CASPubMed Google Scholar
Varnum-Finney, B. et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J. Cell Sci.113, 4313–4318 (2000). CASPubMed Google Scholar
Chen, N. & Greenwald, I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev. Cell.6, 183–192 (2004). ArticleCAS Google Scholar
Malecki, M.J. et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell. Biol.26, 4642–4651 (2006). ArticleCAS Google Scholar
Otwinowsk, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). Article Google Scholar
Perrakis, A., Morris, R. & Lazmin, V. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol.6, 458–463 (1999). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Brunger, A.T., Adams, P. & Clore, G. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol. Crystallogr.54, 905–921 (1998). ArticleCAS Google Scholar
Murshudov, G., Vagin, A. & Dodson, E. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–245 (1997). ArticleCAS Google Scholar