tRNA–mRNA mimicry drives translation initiation from a viral IRES (original) (raw)
Hershey, J.W.B. & Merrick, W.C. Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 33–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2000). Google Scholar
Stoneley, M. & Willis, A.E. Cellular internal ribosome entry segments: structures, _trans_-acting factors and regulation of gene expression. Oncogene23, 3200–3207 (2004). ArticleCASPubMed Google Scholar
Jackson, R.J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans.33, 1231–1241 (2005). ArticleCASPubMed Google Scholar
Schuler, M. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat. Struct. Mol. Biol.13, 1092–1096 (2006). ArticlePubMed Google Scholar
Spahn, C.M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes; the IRES functions as an RNA-based translation factor. Cell118, 465–475 (2004). ArticleCASPubMed Google Scholar
Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem.276, 20824–20826 (2001). ArticleCASPubMed Google Scholar
Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J.D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure13, 1695–1706 (2005). ArticleCASPubMed Google Scholar
Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science291, 1959–1962 (2001). ArticleCASPubMed Google Scholar
Pfingsten, J.S., Costantino, D.A. & Kieft, J.S. Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes. J. Mol. Biol.370, 856–869 (2007). ArticleCASPubMedPubMed Central Google Scholar
Costantino, D. & Kieft, J.S. A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA11, 332–343 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res.31, 2434–2442 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol.324, 889–902 (2002). ArticleCASPubMed Google Scholar
Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA7, 266–274 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wilson, J.E., Pestova, T.V., Hellen, C.U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell102, 511–520 (2000). ArticleCASPubMed Google Scholar
Pestova, T.V. & Hellen, C.U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev.17, 181–186 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sasaki, J. & Nakashima, N. Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. Proc. Natl. Acad. Sci. USA97, 1512–1515 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sasaki, J. & Nakashima, N. Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J. Virol.73, 1219–1226 (1999). CASPubMedPubMed Central Google Scholar
Jan, E. et al. Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. Cold Spring Harb. Symp. Quant. Biol.66, 285–292 (2001). ArticleCASPubMed Google Scholar
Thompson, S.R., Gulyas, K.D. & Sarnow, P. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proc. Natl. Acad. Sci. USA98, 12972–12977 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wilson, J.E., Powell, M.J., Hoover, S.E. & Sarnow, P. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol. Cell. Biol.20, 4990–4999 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jan, E., Kinzy, T.G. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc. Natl. Acad. Sci. USA100, 15410–15415 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pfingsten, J.S., Costantino, D.A. & Kieft, J.S. Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science314, 1450–1454 (2006). ArticleCASPubMedPubMed Central Google Scholar
Keel, A.Y., Rambo, R.P., Batey, R.T. & Kieft, J.S. A general strategy to solve the phase problem in RNA crystallography. Structure15, 761–772 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hilbers, C.W., Michiels, P.J. & Heus, H.A. New developments in structure determination of pseudoknots. Biopolymers48, 137–153 (1998). ArticleCASPubMed Google Scholar
Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science313, 1935–1942 (2006). ArticleCASPubMed Google Scholar
Cabello-Villegas, J., Tworowska, I. & Nikonowicz, E.P. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. Biochemistry43, 55–66 (2004). ArticleCASPubMed Google Scholar
Honda, M., Brown, E.A. & Lemon, S.M. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA2, 955–968 (1996). CASPubMedPubMed Central Google Scholar
Merino, E.J., Wilkinson, K.A., Coughlan, J.L. & Weeks, K.M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc.127, 4223–4231 (2005). ArticleCASPubMed Google Scholar
Wilkinson, K.A., Merino, E.J. & Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc.1, 1610–1616 (2006). ArticleCASPubMed Google Scholar
McGarry, K.G., Walker, S.E., Wang, H. & Fredrick, K. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. Mol. Cell20, 613–622 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature342, 142–148 (1989). ArticleCASPubMed Google Scholar
Bretscher, M.S. Translocation in protein synthesis: a hybrid structure model. Nature218, 675–677 (1968). ArticleCASPubMed Google Scholar
Yamamoto, H., Nakashima, N., Ikeda, Y. & Uchiumi, T. Binding mode of the first aminoacyl-tRNA in translation initiation mediated by Plautia stali intestine virus internal ribosome entry site. J. Biol. Chem.282, 7770–7776 (2007). ArticleCASPubMed Google Scholar
Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA101, 12893–12898 (2004). ArticleCASPubMedPubMed Central Google Scholar
Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell25, 505–517 (2007). ArticleCASPubMedPubMed Central Google Scholar
Allen, G.S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell121, 703–712 (2005). ArticleCASPubMed Google Scholar
Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol.13, 234–241 (2006). ArticleCASPubMedPubMed Central Google Scholar
Olejniczak, M., Dale, T., Fahlman, R.P. & Uhlenbeck, O.C. Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat. Struct. Mol. Biol.12, 788–793 (2005). ArticleCASPubMed Google Scholar
Noller, H.F., Hoang, L. & Fredrick, K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett.579, 855–858 (2005). ArticleCASPubMed Google Scholar
Spahn, C.M. et al. Structure of the 80S ribosome from _Saccharomyces cerevisiae_–tRNA-ribosome and subunit-subunit interactions. Cell107, 373–386 (2001). ArticleCASPubMed Google Scholar
Berk, V., Zhang, W., Pai, R.D. & Cate, J.H. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl. Acad. Sci. USA103, 15830–15834 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sharma, D., Southworth, D.R. & Green, R. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA10, 102–113 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kristensen, O., Laurberg, M., Liljas, A. & Selmer, M. Is tRNA binding or tRNA mimicry mandatory for translation factors? Curr. Protein Pept. Sci.3, 133–141 (2002). ArticleCASPubMed Google Scholar
Fechter, P., Rudinger-Thirion, J., Florentz, C. & Giege, R. Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life Sci.58, 1547–1561 (2001). ArticleCASPubMed Google Scholar
Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem.76, 101–124 (2007). ArticleCASPubMed Google Scholar
Bessho, Y. et al. Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA. Proc. Natl. Acad. Sci. USA104, 8293–8298 (2007). ArticleCASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.58, 1948–1954 (2002). ArticlePubMed Google Scholar
Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat.11, 53–55 (2004). ArticleCASPubMed Google Scholar
Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA101, 1537–1542 (2004). ArticleCASPubMedPubMed Central Google Scholar
Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newslett. Protein Crystallogr No. 26 (1992).
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat.11, 49–52 (2004). ArticleCASPubMed Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A Foundations Crystallogr.47, 110–119 (1991). Article Google Scholar
Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr.54, 905–921 (1998). ArticleCASPubMed Google Scholar
Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA11, 344–354 (2005). ArticleCASPubMedPubMed Central Google Scholar