RNase III enzymes and the initiation of gene silencing (original) (raw)

References

  1. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).
    Article CAS Google Scholar
  2. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
    Article CAS Google Scholar
  3. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).
    Article CAS Google Scholar
  4. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).
    Article CAS Google Scholar
  5. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).
    Article CAS Google Scholar
  6. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).
    Article CAS Google Scholar
  7. Carmell, M.A., Xuan, Z., Zhang, M.Q. & Hannon, G.J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).
    Article CAS Google Scholar
  8. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
    Article CAS Google Scholar
  9. Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 13, 807–818 (2003).
    Article CAS Google Scholar
  10. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).
    Article CAS Google Scholar
  11. Lai, E.C., Tomancak, P., Williams, R.W. & Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42 (2003).
    Article Google Scholar
  12. Lim, L.P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).
    Article CAS Google Scholar
  13. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).
    Article CAS Google Scholar
  14. Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
    Article CAS Google Scholar
  15. Lee, Y., Jeon, K., Lee, J.T., Kim, S. & Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).
    Article CAS Google Scholar
  16. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).
    Article CAS Google Scholar
  17. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).
    Article CAS Google Scholar
  18. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).
    Article CAS Google Scholar
  19. Feinbaum, R. & Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 210, 87–95 (1999).
    Article CAS Google Scholar
  20. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).
    Article CAS Google Scholar
  21. Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).
    Article CAS Google Scholar
  22. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).
    Article CAS Google Scholar
  23. Robertson, H.D., Webster, R.E. & Zinder, N.D. Purification and properties of ribonuclease 3 from Escherichia coli. J. Biol. Chem. 243, 82–91 (1968).
    CAS PubMed Google Scholar
  24. Nicholson, A.W. The ribonuclease III family: forms and functions in RNA maturation, decay, and gene silencing. In RNAi: A Guide to Gene Silencing (ed. Hannon, G.J.) 149–174 (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2003).
    Google Scholar
  25. Filippov, V., Solovyev, V., Filippova, M. & Gill, S.S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).
    Article CAS Google Scholar
  26. Wu, H.J., Xu, H., Miraglia, L.J. & Crooke, S.T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275, 36957–36965 (2000).
    Article CAS Google Scholar
  27. Fortin, K.R., Nicholson, R.H. & Nicholson, A.W. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 3, 26 (2002).
    Article Google Scholar
  28. Blencowe, B.J., Bowman, J.A.L., McCracken, S. & Rosonina, E. SR-related proteins and the processing of messenger RNA precursors. Biochem. Cell Biol. 77, 277–291 (1999).
    Article CAS Google Scholar
  29. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).
    Article CAS Google Scholar
  30. Nykanen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).
    Article CAS Google Scholar
  31. Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).
    Article CAS Google Scholar
  32. Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).
    Article CAS Google Scholar
  33. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
    Article CAS Google Scholar
  34. Gwizdek, C. et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278, 5505–5508 (2003).
    Article CAS Google Scholar
  35. Zhang, H., Kolb, F.A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).
    Article CAS Google Scholar
  36. Tang, G.L., Reinhart, B.J., Bartel, D.P. & Zamore, P.D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).
    Article CAS Google Scholar
  37. Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 469–474 (2003).
    Article CAS Google Scholar
  38. Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).
    Article CAS Google Scholar
  39. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003).
    Article CAS Google Scholar
  40. Murzin, A.G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12, 861–867 (1993).
    Article CAS Google Scholar
  41. Theobald, D.L., Mitton-Fry, R.M. & Wuttke, D.S. Nucleic acid recognition by OB-fold proteins. Ann. Rev. Biophys. Biomol. Struct. 32, 115–133 (2003).
    Article CAS Google Scholar
  42. Theobald, D.L., Cervantes, R.B., Lundblad, V. & Wuttke, D.S. Homology among telomeric end-protection proteins. Structure 11, 1049–1050 (2003).
    Article CAS Google Scholar
  43. Schwarz, D.S., Hutvagner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).
    Article CAS Google Scholar
  44. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).
    Article CAS Google Scholar
  45. Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9, 1225–1236 (2001).
    Article CAS Google Scholar
  46. Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).
    Article CAS Google Scholar
  47. Tabara, H., Yigit, E., Siomi, H. & Mello, C.C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExX-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002).
    Article CAS Google Scholar
  48. Liu, Q.H. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).
    Article CAS Google Scholar
  49. Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7, 1397–1402 (2001).
    CAS PubMed PubMed Central Google Scholar

Download references