The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3 (original) (raw)

References

  1. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033– 3038 (2002).
    CAS PubMed Google Scholar
  2. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121– 1131 (2000).
    Article CAS PubMed Google Scholar
  3. Mendell, J.T., Medghalchi, S.M., Lake, R.G., Noensie, E.N. & Dietz, H.C. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol. 20, 8944– 8957 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  4. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209– 223 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  5. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939– 949 (2003).
    Article CAS PubMed Google Scholar
  6. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14–Mago complex. Nat. Struct. Biol. 10, 433– 439 (2003).
    Article CAS PubMed Google Scholar
  7. Gatfield, D., Unterholzner, L., Ciccarelli, F.D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960– 3970 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  8. Denning, G., Jamieson, L., Maquat, L.E., Thompson, E.A. & Fields, A.P. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J. Biol. Chem. 276, 22709– 22714 (2001).
    Article CAS PubMed Google Scholar
  9. Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77– 87 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  10. Anders, K.R., Grimson, A. & Anderson, P. SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22, 641– 650 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  11. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987– 4997 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  12. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607– 617 (2001).
    Article CAS PubMed Google Scholar
  13. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665– 1677 (1998).
    CAS PubMed PubMed Central Google Scholar
  14. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832– 1836 (2001).
    Article CAS PubMed Google Scholar
  15. Wang, W., Czaplinski, K., Rao, Y. & Peltz, S.W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 20, 880– 890 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  16. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198– 199 (1998).
    Article CAS PubMed Google Scholar
  17. Zhang, S., Ruiz-Echevarria, M.J., Quan, Y. & Peltz, S.W. Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol. Cell. Biol. 15, 2231– 2244 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  18. Schell, T. et al. Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem. J. 373, 775– 783 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  19. Letunic, I. et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30, 242– 244 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  20. Ponting, C.P. Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem. Sci. 25, 423– 426 (2000).
    Article CAS PubMed Google Scholar
  21. Marcotrigiano, J. et al. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7, 193– 203 (2001).
    Article CAS PubMed Google Scholar
  22. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383– 396 (2001).
    Article CAS PubMed Google Scholar
  23. He, F., Brown, A.H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17, 1580– 1594 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  24. He, F., Brown, A.H. & Jacobson, A. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2, 153– 170 (1996).
    CAS PubMed PubMed Central Google Scholar
  25. Hall, K.B. RNA-protein interactions. Curr. Opin. Struct. Biol. 12, 283– 288 (2002).
    Article CAS PubMed Google Scholar
  26. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123– 138 (1993).
    Article CAS PubMed Google Scholar
  27. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579– 585 (1999).
    Article CAS PubMed Google Scholar
  28. Conte, M.R. et al. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J. 19, 3132– 3141 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  29. Lau, C.K., Diem, M.D., Dreyfuss, G. & Van Duyne, G.D. Structure of the y14-magoh core of the exon junction complex. Curr. Biol., 933– 941 (2003).
  30. Shi, H. & Xu, R.M. Crystal structure of the Drosophila Mago nashi–Y14 complex. Genes Dev. 17, 971– 976 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  31. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666– 1674 (2001).
    Article CAS PubMed Google Scholar
  32. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell. 11, 965– 976 (2003).
    Article CAS PubMed Google Scholar
  33. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Large-scale induced fit recognition of an m(7)G_P_G cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548– 5557 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  34. Shirley, R.L., Lelivelt, M.J., Schenkman, L.R., Dahlseid, J.N. & Culbertson, M.R. A factor required for nonsense-mediated mRNA decay in yeast is exported from the nucleus to the cytoplasm by a nuclear export signal sequence. J. Cell Sci. 111, 3129– 3143 (1998).
    CAS PubMed Google Scholar
  35. Shirley, R.L., Ford, A.S., Richards, M.R., Albertini, M. & Culbertson, M.R. Nuclear import of Upf3p is mediated by importin-α/-β and export to the cytoplasm is required for a functional nonsense-mediated mRNA decay pathway in yeast. Genetics 161, 1465– 1482 (2002).
    CAS PubMed PubMed Central Google Scholar
  36. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795– 800 (1993).
    Article CAS Google Scholar
  37. Uson, I. & Sheldrick, G.M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643– 648 (1999).
    Article CAS PubMed Google Scholar
  38. Terwilliger, T.C., Kim, S.H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1– 5 (1987).
    Article Google Scholar
  39. Terwilliger, T.C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863– 1871 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  40. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458– 463 (1999).
    Article CAS PubMed Google Scholar
  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).
    Article PubMed Google Scholar
  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).
    Article CAS PubMed Google Scholar
  43. Scherly, D. et al. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 8, 4163– 4170 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  44. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876– 4882 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  45. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305– 308 (1999).
    Article CAS PubMed Google Scholar
  46. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946– 950 (1991).
    Article Google Scholar
  47. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938– 940 (1999).
    Article CAS PubMed Google Scholar
  48. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Gen. 11, 281– 296 (1991).
    Article CAS Google Scholar
  49. Diederichs, K. & Karplus, P.A. Improved _R_-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269– 275 (1997).
    Article CAS PubMed Google Scholar

Download references