Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster (original) (raw)

References

  1. Chávez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).
    Article Google Scholar
  2. Jimeno, S., Rondón, A.G., Luna, R. & Aguilera, A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21, 3526–3535 (2002).
    Article CAS Google Scholar
  3. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).
    Article Google Scholar
  4. Libri, D. et al. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol. Cell. Biol. 22, 8254–8266 (2002).
    Article CAS Google Scholar
  5. Piruat, J.I. & Aguilera, A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 17, 4859–4872 (1998).
    Article CAS Google Scholar
  6. Rondón, A.G., Jimeno, S., García-Rubio, M. & Aguilera, A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J. Biol. Chem. 278, 39037–39043 (2003).
    Article Google Scholar
  7. Schneiter, R. et al. The Saccharomyces cerevisiae hyper-recombination mutant hpr1Δ is synthetically lethal with two conditional alleles of the acetyl coenzyme A carboxylase gene and causes a defect in nuclear export of polyadenylated RNA. Mol. Cell. Biol. 19, 3415–3422 (1999).
    Article CAS Google Scholar
  8. West, R.W. Jr., Kruger, B., Thomas, S., Ma, J. & Milgrom, E. RLR1 (THO2), required for expressing lacZ fusions in yeast, is conserved from yeast to humans and is a suppressor of SIN4. Gene 243, 195–205 (2000).
    Article CAS Google Scholar
  9. Chang, M. et al. A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol. Cell. Biol. 19, 1056–1067 (1999).
    Article CAS Google Scholar
  10. Fan, H.Y., Merker, R.J. & Klein, H.L. High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol. Cell. Biol. 21, 5459–5470 (2001).
    Article CAS Google Scholar
  11. Zenklusen, D., Vinciguerra, P., Wyss, J.C. & Stutz, F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol. Cell. Biol. 22, 8241–8253 (2002).
    Article CAS Google Scholar
  12. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).
    Article CAS Google Scholar
  13. Stutz, F. & Izaurralde, E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327 (2003).
    Article CAS Google Scholar
  14. Strässer, K. & Hurt, E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).
    Article Google Scholar
  15. Zenklusen, D., Vinciguerra, P., Strahm, Y. & Stutz, F. The yeast hnRNP-like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol. Cell. Biol. 13, 4219–4232 (2001).
    Article Google Scholar
  16. Strässer, K. & Hurt, E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413, 648–652 (2001).
    Article Google Scholar
  17. Lei, E.P. et al. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15, 1771–1782 (2001).
    Article CAS Google Scholar
  18. Lei, E.P. & Silver, P.A. Intron status and 3′-end formation control cotranscriptional export of mRNA. Genes Dev. 16, 2761–2766 (2002).
    Article CAS Google Scholar
  19. Jensen, T.H., Dower, K., Libri, D. & Rosbash, M. Early formation of mRNP: license for export or quality control? Mol. Cell 11, 1129–1138 (2003).
    Article CAS Google Scholar
  20. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA-RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).
    Article CAS Google Scholar
  21. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).
    Article CAS Google Scholar
  22. Herold, A., Teixeira, L. & Izaurralde, E. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J. 22, 2472–2483 (2003).
    Article CAS Google Scholar
  23. Gatfield, D. et al. The DExH/D-box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).
    Article CAS Google Scholar
  24. Gatfield, D. & Izaurralde, E. REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J. Cell Biol. 159, 579–588 (2002).
    Article CAS Google Scholar
  25. Longman, D., Johnstone, I.L. & Caceres, J.F. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA 9, 881–891 (2003).
    Article CAS Google Scholar
  26. MacMorris, M., Brocker, C. & Blumenthal, T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA 9, 847–857 (2003).
    Article CAS Google Scholar
  27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
    Article CAS Google Scholar
  28. Echalier, G. Drosophila Cells in Culture (Academic Press, San Diego, 1997).
    Google Scholar
  29. Yost, H.J. & Lindquist, S. RNA splicing is interrupted by heat-shock and is rescued by heat-shock protein synthesis. Cell 45, 185–193 (1986).
    Article CAS Google Scholar
  30. Chávez, S., Garcia-Rubio, M., Prado, F. & Aguilera, A. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 7054–7064 (2001).
    Article Google Scholar
  31. Aguilera, A. The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002).
    Article CAS Google Scholar
  32. Weber, C.H. & Vincenz, C. The death domain superfamily: a tale of two interfaces? Trends Biochem. Sci. 26, 475–481 (2001).
    Article CAS Google Scholar
  33. Fulop, V. & Jones, D.T. β-propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721 (1999).
    Article CAS Google Scholar
  34. Herold, A., Klimenko, T. & Izaurralde, E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7, 1768–1780 (2001).
    CAS PubMed PubMed Central Google Scholar
  35. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).
    Article CAS Google Scholar
  36. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).
    Article CAS Google Scholar
  37. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).
    Article CAS Google Scholar
  38. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).
    Article CAS Google Scholar
  39. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
    Article CAS Google Scholar
  40. Wilm, M., Neubauer, G. & Mann, M. Parent ion scans of unseparated peptide mixtures. Anal. Chem. 68, 527–533 (1996).
    Article CAS Google Scholar
  41. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–144 (2004).
    Article CAS Google Scholar

Download references