DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces (original) (raw)

References

  1. Ochman, H., Lawrence, J.G. & Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).
    Article CAS Google Scholar
  2. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).
    Article CAS Google Scholar
  3. Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 3, 241–249 (2004).
    Article CAS Google Scholar
  4. Smith, D.E. et al. The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).
    Article CAS Google Scholar
  5. Salman, H., Zbaida, D., Rabin, Y., Chatenay, D. & Elbaum, M. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc. Natl. Acad. Sci. USA 98, 7247–7252 (2001).
    Article CAS Google Scholar
  6. Sauer-Budge, A.F., Nyamwanda, J.A., Lubensky, D.K. & Branton, D. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90, 238101 (2003).
    Article Google Scholar
  7. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).
    Article CAS Google Scholar
  8. Hoa, T.T., Tortosa, P., Albano, M. & Dubnau, D. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43, 15–26 (2002).
    Article CAS Google Scholar
  9. Provvedi, R., Chen, I. & Dubnau, D. NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol. Microbiol. 40, 634–644 (2001).
    Article CAS Google Scholar
  10. Provvedi, R. & Dubnau, D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31, 271–280 (1999).
    Article CAS Google Scholar
  11. Bouchiat, C. et al. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76, 409–413 (1999).
    Article CAS Google Scholar
  12. Nieuwenhoven, M.H., Hellingwerf, K.J., Venema, G. & Konings, W.N. Role of proton motive force in genetic transformation of Bacillus subtilis. J. Bacteriol. 151, 771–776 (1982).
    PubMed PubMed Central Google Scholar
  13. Mejean, V. & Claverys, J.P. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268, 5594–5599 (1993).
    CAS Google Scholar
  14. Neupert, W. & Brunner, M. The protein import motor of mitochondria. Nat Rev Mol. Cell. Biol. 3, 555–565 (2002).
    Article CAS Google Scholar
  15. Chauwin, J.F., Oster, G. & Glick, B.S. Strong precursor-pore interactions constrain models for mitochondrial protein import. Biophys. J. 74, 1732–1743 (1998).
    Article CAS Google Scholar
  16. Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol. 13, 114–121 (2003).
    Article CAS Google Scholar
  17. Londono-Vallejo, J.A. & Dubnau, D. Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J. Bacteriol. 176, 4642–4645 (1994).
    Article CAS Google Scholar
  18. Perkins, T.T., Dalal, R.V., Mitsis, P.G. & Block, S.M. Sequence-dependent pausing of single lambda exonuclease molecules. Science 301, 1914–1918 (2003).
    Article CAS Google Scholar
  19. Davenport, R.J., Wuite, G.J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).
    Article CAS Google Scholar
  20. Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl. Acad. Sci. USA 97, 12002–12007 (2000).
    Article CAS Google Scholar
  21. Maier, B. et al. Single pilus motor forces exceed 100 pN. Proc. Natl. Acad. Sci. USA 99, 16012–16017 (2002).
    Article CAS Google Scholar
  22. Kaiser, D. Bacterial motility: how do pili pull? Curr. Biol. 10, R777–R780 (2000).
    Article CAS Google Scholar
  23. Albano, M., Breitling, R. & Dubnau, D.A. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171, 5386–5404 (1989).
    Article CAS Google Scholar
  24. Liu, L., Nakano, M.M., Lee, O.H. & Zuber, P. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J. Bacteriol. 178, 5144–5152 (1996).
    Article CAS Google Scholar
  25. Anagnostopoulos, C. & Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81, 3389–4302 (1961).
    Google Scholar
  26. Albano, M., Hahn, J. & Dubnau, D. Expression of competence genes in Bacillus subtilis. J. Bacteriol. 169, 3110–3117 (1987).
    Article CAS Google Scholar
  27. Fung, D.C. & Berg, H.C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812 (1995).
    Article CAS Google Scholar
  28. Simmons, R.M., Finer, J.T., Chu, S. & Spudich, J.A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).
    Article CAS Google Scholar
  29. Marko, J.F. & Siggia, E.D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).
    Article CAS Google Scholar

Download references