Dynamic opening of DNA during the enzymatic search for a damaged base (original) (raw)

References

  1. Stivers, J.T. & Jiang, Y.L. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103, 2729–2759 (2003).
    Article CAS Google Scholar
  2. Stivers, J.T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol. 77, 37–65 (2004).
    Article CAS Google Scholar
  3. Parikh, S.S. et al. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226 (1998).
    Article CAS Google Scholar
  4. Parikh, S.S. et al. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc. Natl. Acad. Sci. USA 97, 5083–5088 (2000).
    Article CAS Google Scholar
  5. Werner, R.M. et al. Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase. Biochemistry 39, 12585–12594 (2000).
    Article CAS Google Scholar
  6. Drohat, A.C. & Stivers, J.T. NMR evidence for an unusually low N1 p_K_a for uracil bound to uracil DNA glycosylase: Implications for catalysis. J. Am. Chem. Soc. 122, 1840–1841 (2000).
    Article CAS Google Scholar
  7. Kwon, K., Jiang, Y. & Stivers, J. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. Chem. Biol. 10, 1–20 (2003).
    Article Google Scholar
  8. Cao, C., Kwon, K., Jiang, Y.L., Drohat, A.C. & Stivers, J.T. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I. J. Biol. Chem. 48012–48021 (2003).
  9. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA [see comments]. Nature 384, 87–92 (1996).
    Article CAS Google Scholar
  10. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 95, 249–258 (1998).
    Article CAS Google Scholar
  11. Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D. & Ellenberger, T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl. Acad. Sci. USA 97, 13573–13578 (2000).
    Article CAS Google Scholar
  12. Jiang, Y.L. & Stivers, J.T. Mutational analysis of the base flipping mechanism of uracil DNA glycosylase. Biochemistry 41, 11236–11247 (2002).
    Article CAS Google Scholar
  13. Stivers, J.T., Pankiewicz, K.W. & Watanabe, K.A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952–963 (1999).
    Article CAS Google Scholar
  14. Roberts, R.J. On base flipping. Cell 82, 9–12 (1995).
    Article CAS Google Scholar
  15. Krosky, D.J., Schwarz, F.P. & Stivers, J.T. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition? Biochemistry 43, 4188–4195 (2004).
    Article CAS Google Scholar
  16. Jencks, W.P. When is an intermediate not an intermediate—enforced mechanisms of general acid-base catalyzed, carbocation, carbanion, and ligand-exchange reactions. Acc. Chem. Res. 13, 161–169 (1980).
    Article CAS Google Scholar
  17. Chen, L., Haushalter, K.A., Lieber, C.M. & Verdine, G.L. Direct visualization of a DNA glycosylase searching for damage. Chem. Biol. 9, 345–350 (2002).
    Article CAS Google Scholar
  18. Verdine, G.L. & Bruner, S.D. How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329–334 (1997).
    Article CAS Google Scholar
  19. Seibert, E., Ross, J.B. & Osman, R. Role of DNA flexibility in sequence-dependent activity of uracil DNA glycosylase. Biochemistry 41, 10976–10984 (2002).
    Article CAS Google Scholar
  20. Banavali, N.K. & MacKerell, A.D. Jr. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J. Mol. Biol. 319, 141–160 (2002).
    Article CAS Google Scholar
  21. Gueron, M. & Leroy, J.-L. Studies of Base Pair Kinetics by NMR Measurement of Proton Exchange. Methods Enzymol. 261, 383–413 (1995).
    Article CAS Google Scholar
  22. Guéron, M. et al. Applications to imino proton exchange to nucleic acid kinetics and structure. In Structure and Methods (eds. Sarma, R.H. & Sarma, M.H.) 113–137 (Adenine Press, Guilderland, New York, 1990).
    Google Scholar
  23. Kavli, B. et al. Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. 15, 3442–3447 (1996).
    Article CAS Google Scholar
  24. Gueron, M., Kochoyan, M. & Leroy, J.L. A single mode of DNA base-pair opening drives imino proton exchange. Nature 328, 89–92 (1987).
    Article CAS Google Scholar
  25. Warmlander, S., Sen, A. & Leijon, M. Imino proton exchange in DNA catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived open state of the base pair. Biochemistry 39, 607–615 (2000).
    Article CAS Google Scholar
  26. Handa, P., Acharya, N. & Varshney, U. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate. Nucleic Acids Res. 30, 3086–3095 (2002).
    Article CAS Google Scholar
  27. Jiang, Y.L., Song, F. & Stivers, J.T. Base flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge. Biochemistry 41, 11248–11254 (2002).
    Article CAS Google Scholar
  28. Bommarito, S., Peyret, N. & SantaLucia, J. Jr. Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res. 28, 1929–1934 (2000).
    Article CAS Google Scholar
  29. Stivers, J.T., Jagadeesh, G.J., Nawrot, B., Stec, W.J. & Shuman, S. Stereochemical outcome and kinetic effects of Rp- and Sp- phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase. Biochemistry 39, 5561–5572 (2000).
    Article CAS Google Scholar
  30. Drohat, A.C., Jagadeesh, J., Ferguson, E. & Stivers, J.T. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Biochemistry 38, 11866–11875 (1999).
    Article CAS Google Scholar
  31. Jiang, Y.L., Kwon, K. & Stivers, J.T. Turning on uracil-DNA glycosylase using a pyrene nucleotide switch. J. Biol. Chem. 276, 42347–42354 (2001).
    Article CAS Google Scholar
  32. Jiang, Y.L., Ichikawa, Y. & Stivers, J.T. Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic. Biochemistry 41, 7116–7124 (2002).
    Article CAS Google Scholar
  33. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
    Article CAS Google Scholar
  34. Snoussi, K. & Leroy, J.L. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40, 8898–9904 (2001).
    Article CAS Google Scholar
  35. Benight, A.S., Schurr, J.M., Flynn, P.F., Reid, B.R. & Wemmer, D.E. Melting of a self-complementary DNA minicircle. Comparison of optical melting theory with exchange broadening of the nuclear magnetic resonance spectrum. J. Mol. Biol. 200, 377–399 (1988).
    Article CAS Google Scholar

Download references