Passmore, L.A. & Barford, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J.379, 513–525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pichler, A. & Melchior, F. SUMO E3 ligases. In SUMOylation. Molecular Biology and Biochemistry (ed. Van Wilson, G.) (Horizon Press, Norwich, UK, 2004). Google Scholar
Macauley, M.S. et al. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J. Biol. Chem.279, 49131–49137 (2004). ArticleCASPubMed Google Scholar
Chen, Z. & Pickart, C.M. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J. Biol. Chem.265, 21835–21842 (1990). CASPubMed Google Scholar
Song, S. et al. Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity. Mol. Cell12, 553–563 (2003). ArticleCASPubMed Google Scholar
Kalchman, M.A. et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem.271, 19385–19394 (1996). ArticleCASPubMed Google Scholar
Lelouard, H. et al. Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J. Cell Biol.164, 667–675 (2004). ArticleCASPubMedPubMed Central Google Scholar
Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell11, 1043–1054 (2003). ArticleCASPubMed Google Scholar
Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J.21, 1456–1464 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCASPubMed Google Scholar
Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell115, 565–576 (2003). ArticleCASPubMed Google Scholar
Haldeman, M.T., Xia, G., Kasperek, E.M. & Pickart, C.M. Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. Biochemistry36, 10526–10537 (1997). ArticleCASPubMed Google Scholar
Hamilton, K.S. et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure9, 897–904 (2001). ArticleCASPubMed Google Scholar
Cook, W.J., Jeffrey, L.C., Kasperek, E. & Pickart, C.M. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J. Mol. Biol.236, 601–609 (1994). ArticleCASPubMed Google Scholar
Phillips, C.L., Thrower, J., Pickart, C.M. & Hill, C.P. Structure of a new crystal form of tetraubiquitin. Acta Crystallogr. D57, 341–344 (2001). ArticleCASPubMed Google Scholar
Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell111, 1041–1054 (2002). ArticleCASPubMed Google Scholar
Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell5, 865–876 (2000). ArticleCASPubMed Google Scholar
Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8–ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell12, 1427–1437 (2003). ArticleCASPubMed Google Scholar
Sullivan, M.L. & Vierstra, R.D. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J. Biol. Chem.266, 23878–23885 (1991). CASPubMed Google Scholar
Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem.277, 47938–47945 (2002). ArticleCASPubMed Google Scholar
Huang, D.T. et al. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol.11, 927–935 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem.276, 21664–21669 (2001). ArticleCASPubMed Google Scholar
Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell108, 345–356 (2002). ArticleCASPubMed Google Scholar
Lin, D. et al. Identification of a substrate recognition site on Ubc9. J. Biol. Chem.277, 21740–21748 (2002). ArticleCASPubMed Google Scholar
Huang, L. et al. Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science286, 1321–1326 (1999). ArticleCASPubMed Google Scholar
Cope, G.A. & Deshaies, R.J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell114, 663–671 (2003). ArticleCASPubMed Google Scholar
Wolf, D.A., Zhou, C. & Wee, S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol.5, 1029–1033 (2003). ArticleCASPubMed Google Scholar
Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88, 97–107 (1997). ArticleCASPubMed Google Scholar
Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell108, 109–120 (2002). ArticleCASPubMed Google Scholar
Haldeman, M.T., Finley, D. & Pickart, C.M. Dynamics of ubiquitin conjugation during erythroid differentiation in vitro. J. Biol. Chem.270, 9507–9516 (1995). ArticleCASPubMed Google Scholar
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem.68, 850–858 (1996). ArticleCASPubMed Google Scholar
Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom.34, 105–116 (1999). ArticleCASPubMed Google Scholar
Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol.6, 458–463 (1999). ArticleCASPubMed Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). ArticlePubMed Google Scholar
Pickart, C.M. & Vella, A.T. Levels of active ubiquitin carrier proteins decline during erythroid maturation. J. Biol. Chem.263, 12028–12035 (1988). CASPubMed Google Scholar