SUMO modification of the ubiquitin-conjugating enzyme E2-25K (original) (raw)

References

  1. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
    Article CAS PubMed Google Scholar
  2. Passmore, L.A. & Barford, D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379, 513–525 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  3. Pichler, A. & Melchior, F. SUMO E3 ligases. In SUMOylation. Molecular Biology and Biochemistry (ed. Van Wilson, G.) (Horizon Press, Norwich, UK, 2004).
    Google Scholar
  4. Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).
    Article CAS PubMed Google Scholar
  5. Macauley, M.S. et al. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1. J. Biol. Chem. 279, 49131–49137 (2004).
    Article CAS PubMed Google Scholar
  6. Chen, Z. & Pickart, C.M. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J. Biol. Chem. 265, 21835–21842 (1990).
    CAS PubMed Google Scholar
  7. Song, S. et al. Essential role of E2-25K/Hip-2 in mediating amyloid-β neurotoxicity. Mol. Cell 12, 553–563 (2003).
    Article CAS PubMed Google Scholar
  8. Kalchman, M.A. et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 271, 19385–19394 (1996).
    Article CAS PubMed Google Scholar
  9. Lelouard, H. et al. Dendritic cell aggresome-like induced structures are dedicated areas for ubiquitination and storage of newly synthesized defective proteins. J. Cell Biol. 164, 667–675 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  10. Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).
    Article CAS PubMed Google Scholar
  11. Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  12. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).
    Article CAS PubMed Google Scholar
  13. Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).
    Article CAS PubMed Google Scholar
  14. Haldeman, M.T., Xia, G., Kasperek, E.M. & Pickart, C.M. Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. Biochemistry 36, 10526–10537 (1997).
    Article CAS PubMed Google Scholar
  15. Hamilton, K.S. et al. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9, 897–904 (2001).
    Article CAS PubMed Google Scholar
  16. Cook, W.J., Jeffrey, L.C., Kasperek, E. & Pickart, C.M. Structure of tetraubiquitin shows how multiubiquitin chains can be formed. J. Mol. Biol. 236, 601–609 (1994).
    Article CAS PubMed Google Scholar
  17. Phillips, C.L., Thrower, J., Pickart, C.M. & Hill, C.P. Structure of a new crystal form of tetraubiquitin. Acta Crystallogr. D 57, 341–344 (2001).
    Article CAS PubMed Google Scholar
  18. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).
    Article CAS PubMed Google Scholar
  19. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).
    Article CAS PubMed Google Scholar
  20. Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8–ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).
    Article CAS PubMed Google Scholar
  21. Sullivan, M.L. & Vierstra, R.D. Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. J. Biol. Chem. 266, 23878–23885 (1991).
    CAS PubMed Google Scholar
  22. Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).
    Article CAS PubMed Google Scholar
  23. Huang, D.T. et al. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  24. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).
    Article CAS PubMed Google Scholar
  25. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).
    Article CAS PubMed Google Scholar
  26. Lin, D. et al. Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740–21748 (2002).
    Article CAS PubMed Google Scholar
  27. Huang, L. et al. Structure of an E6AP–UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).
    Article CAS PubMed Google Scholar
  28. Cope, G.A. & Deshaies, R.J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 (2003).
    Article CAS PubMed Google Scholar
  29. Wolf, D.A., Zhou, C. & Wee, S. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol. 5, 1029–1033 (2003).
    Article CAS PubMed Google Scholar
  30. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).
    Article CAS PubMed Google Scholar
  31. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).
    Article CAS PubMed Google Scholar
  32. Haldeman, M.T., Finley, D. & Pickart, C.M. Dynamics of ubiquitin conjugation during erythroid differentiation in vitro. J. Biol. Chem. 270, 9507–9516 (1995).
    Article CAS PubMed Google Scholar
  33. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
    Article CAS PubMed Google Scholar
  34. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 34, 105–116 (1999).
    Article CAS PubMed Google Scholar
  35. Collaborative Computational Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
  36. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).
    Article CAS PubMed Google Scholar
  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article PubMed Google Scholar
  38. Pickart, C.M. & Vella, A.T. Levels of active ubiquitin carrier proteins decline during erythroid maturation. J. Biol. Chem. 263, 12028–12035 (1988).
    CAS PubMed Google Scholar

Download references