Structural dissection and high-throughput screening of mannosylglycerate synthase (original) (raw)
References
Coutinho, P., Deleury, E., Davies, G.J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol.328, 307–317 (2003). ArticleCAS Google Scholar
Chiu, C.P. et al. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat. Struct. Mol. Biol.11, 163–170 (2004). ArticleCAS Google Scholar
Charnock, S.J. & Davies, G.J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry38, 6380–6385 (1999). ArticleCAS Google Scholar
Vrielink, A., Rüger, W., Driessen, H.P.C. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J.13, 3413–3422 (1994). ArticleCAS Google Scholar
Lobsanov, Y.D. et al. Structure of Kre2p/Mnt1p—a yeast α-1,2-mannosyltransferase involved in mannoprotein biosynthesis. J. Biol. Chem.279, 17921–17931 (2004). ArticleCAS Google Scholar
Martins, L.O. et al. Biosynthesis of mannosylglycerate in the thermophilic bacterium _Rhodothermus marinus_—Biochemical and genetic characterization of a mannosylglycerate synthase. J. Biol. Chem.274, 35407–35414 (1999). ArticleCAS Google Scholar
Borges, N., Marugg, J.D., Empadinhas, N., da Costa, M.S. & Santos, H. Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J. Biol. Chem.279, 9892–9898 (2004). ArticleCAS Google Scholar
Borges, N., Ramos, A., Raven, N.D.H., Sharp, R.J. & Santos, H. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles6, 209–216 (2002). ArticleCAS Google Scholar
Faria, T.Q., Knapp, S., Ladenstein, R., Macanita, A.L. & Santos, H. Protein stabilisation by compatible solutes: Effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. Chembiochem4, 734–741 (2003). Article Google Scholar
Yang, M., Brazier, M., Edwards, R. & Davis, B.H. High-throughput mass spectrometry monitoring for multi-substrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem6, 346–357 (2005). ArticleCAS Google Scholar
Sampaio, M.M., Santos, H. & Boos, W. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Appl. Environ. Microbiol.69, 233–240 (2003). ArticleCAS Google Scholar
Wiggins, C.A. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other glycosyltransferase families. Proc. Natl. Acad. Sci. USA95, 7945–7950 (1998). ArticleCAS Google Scholar
Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol.233, 123–138 (1993). ArticleCAS Google Scholar
Pedersen, L.C. et al. Crystal structure of an alpha 1,4-_N_- acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem.278, 14420–14428 (2003). ArticleCAS Google Scholar
Persson, K. et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol.8, 166–175 (2001). ArticleCAS Google Scholar
Campbell, J.A., Davies, G.J., Bulone, V. & Henrissat, B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino-acid similarities. Biochem. J.326, 929–942 (1997). ArticleCAS Google Scholar
Lairson, L.L. et al. Intermediate trapping on a mutant retaining α- galactosyltransferase identifies an unexpected aspartate residue. J. Biol. Chem.279, 28339–28344 (2004). ArticleCAS Google Scholar
Sinnott, M.L. & Jencks, W. Solvolysis of D-glucopyranosyl derivatives in mixtures of ethanol and 2,2,2-trifluoroethano. J. Am. Chem. Soc.102, 2026–2032 (1980). ArticleCAS Google Scholar
Proctor, M. et al. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of the Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. USA102, 2697–2702 (2005). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D58, 1772–1779 (2002). Article Google Scholar
Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). Article Google Scholar
Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr.30, 1022–1025 (1997). ArticleCAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D53, 240–255 (1997). ArticleCAS Google Scholar
Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model.15, 132–134 (1997). ArticleCAS Google Scholar
Pedersen, L.C. et al. Heparan/chondroitin sulfate biosynthesis: structure and mechanism of human glucuronyltransferase I. J. Biol. Chem.275, 34580–34585 (2000). ArticleCAS Google Scholar
Tarbouriech, N., Charnock, S.J. & Davies, G.J. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J. Mol. Biol.314, 655–661 (2001). ArticleCAS Google Scholar