CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells (original) (raw)
References
Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell106, 607–617 (2001). ArticleCASPubMed Google Scholar
Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev.18, 745–754 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lejeune, F., Ranganathan, A.C. & Maquat, L.E. eIF4G is required for the pioneer round of translation in mammalian cells. Nat. Struct. Mol. Biol.11, 992–1000 (2004). ArticleCASPubMed Google Scholar
Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J.21, 3536–3545 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science293, 1836–1839 (2001). ArticleCASPubMed Google Scholar
Kim, Y.K., Furic, L., Desgroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell120, 195–208 (2005). ArticleCASPubMed Google Scholar
Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell11, 939–949 (2003). ArticleCASPubMed Google Scholar
Kataoka, N. & Dreyfuss, G. A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J. Biol. Chem.279, 7009–7013 (2004). ArticleCASPubMed Google Scholar
Hirose, T., Shu, M.D. & Steitz, J.A. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc. Natl. Acad. Sci. USA101, 17976–17981 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci.23, 198–199 (1998). ArticleCASPubMed Google Scholar
Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol.5, 89–99 (2004). ArticleCASPubMed Google Scholar
Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol.16, 279–284 (2004). ArticleCASPubMed Google Scholar
Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell103, 1121–1131 (2000). ArticleCASPubMed Google Scholar
Zhang, J., Sun, X., Qian, Y. & Maquat, L.E. Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA4, 801–815 (1998). ArticleCASPubMedPubMed Central Google Scholar
Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol.18, 2932–2939 (1998). ArticleCASPubMedPubMed Central Google Scholar
Belgrader, P. & Maquat, L.E. Nonsense but not missense mutations can decrease the abundance of nuclear mRNA for the mouse major urinary protein, while both types of mutations can facilitate exon skipping. Mol. Cell. Biol.14, 6326–6336 (1994). ArticleCASPubMedPubMed Central Google Scholar
Lejbkowicz, F. et al. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc. Natl. Acad. Sci. USA89, 9612–9616 (1992). ArticleCASPubMedPubMed Central Google Scholar
Dostie, J., Lejbkowicz, F. & Sonenberg, N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J. Cell Biol.148, 239–247 (2000). ArticleCASPubMedPubMed Central Google Scholar
Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J.14, 5701–5709 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol.15, 4990–4997 (1995). ArticleCASPubMedPubMed Central Google Scholar
Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell3, 707–716 (1999). ArticleCASPubMed Google Scholar
Gingras, A.C., Kennedy, S.G., O'Leary, M.A., Sonenberg, N. & Hay, N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev.12, 502–513 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pal, M., Ishigaki, Y., Nagy, E. & Maquat, L.E. Evidence that phosphorylation of human Upf1 protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA7, 5–15 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharya, A. et al. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA6, 1226–1235 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell8, 383–396 (2001). ArticleCASPubMed Google Scholar
Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol.21, 209–223 (2001). ArticleCASPubMedPubMed Central Google Scholar
Luo, M., Duchaine, T.F. & DesGroseillers, L. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem. J.365, 817–824 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mendell, J.T., ap Rhys, C.M. & Dietz, H.C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science298, 419–422 (2002). ArticleCASPubMed Google Scholar
Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol.12, 1060–1067 (2002). ArticleCASPubMed Google Scholar
Gao, Q., Das, B., Sherman, F. & Maquat, L.E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA102, 4258–4263 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol.11, 330–337 (2004). ArticleCASPubMed Google Scholar
Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell78, 657–668 (1994). ArticleCASPubMed Google Scholar
Wickham, L., Duchaine, T., Luo, M., Nabi, I.R. & DesGroseillers, L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol. Cell. Biol.19, 2220–2230 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gingras, A.C., Svitkin, Y., Belsham, G.J., Pause, A. & Sonenberg, N. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc. Natl. Acad. Sci. USA93, 5578–5583 (1996). ArticleCASPubMedPubMed Central Google Scholar
Berger, F.G. & Szoka, P. Biosynthesis of the major urinary proteins in mouse liver: a biochemical genetic study. Biochem. Genet.19, 1261–1273 (1981). ArticleCASPubMed Google Scholar
Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell12, 675–687 (2003). CASPubMed Google Scholar