DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells (original) (raw)
Altincicek B, Tenbaum SP, Dressel U, Thormeyer D, Renkawitz R, Baniahmad A . (2000). Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita. J Biol Chem275: 7662–7667. ArticleCASPubMed Google Scholar
Arvand A, Denny CT . (2001). Biology of EWS/ETS fusions in Ewing's family tumors. Oncogene20: 5747–5754. ArticleCASPubMed Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet25: 25–29. ArticleCASPubMedPubMed Central Google Scholar
Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G et al. (1994). A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet7: 497–501. ArticleCASPubMed Google Scholar
Carrillo J, Garcia-Aragoncillo E, Azorin D, Agra N, Sastre A, Gonzalez-Mediero I et al. (2007). Cholecystokinin down-regulation by RNA interference impairs Ewing tumor growth. Clin Cancer Res13: 2429–2440. ArticleCASPubMed Google Scholar
Crawford PA, Dorn C, Sadovsky Y, Milbrandt J . (1998). Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol18: 2949–2956. ArticleCASPubMedPubMed Central Google Scholar
De Alava E, Gerald WL . (2000). Molecular biology of the Ewing's sarcoma/primitive neuroectodermal tumor family. J Clin Oncol18: 204–213. ArticleCASPubMed Google Scholar
Ferreira BI, Alonso J, Carrillo J, Acquadro F, Largo C, Suela J et al. (2008). Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma. Oncogene27: 2084–2090. ArticleCASPubMed Google Scholar
Guo W, Burris TP, Zhang YH, Huang BL, Mason J, Copeland KC et al. (1996). Genomic sequence of the DAX1 gene: an orphan nuclear receptor responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. J Clin Endocrinol Metab81: 2481–2486. CASPubMed Google Scholar
Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG et al. (1999). Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet23: 222–227. ArticleCASPubMed Google Scholar
Holter E, Kotaja N, Makela S, Strauss L, Kietz S, Janne OA et al. (2002). Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Mol Endocrinol16: 515–528. ArticleCASPubMed Google Scholar
Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . (2003). Identifying biological themes within lists of genes with EASE. Genome Biol4: R70. ArticlePubMedPubMed Central Google Scholar
Ito M, Yu R, Jameson JL . (1997). DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol17: 1476–1483. ArticleCASPubMedPubMed Central Google Scholar
Kim S, Denny CT, Wisdom R . (2006). Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins. Mol Cell Biol26: 2467–2478. ArticleCASPubMedPubMed Central Google Scholar
Kinsey M, Smith R, Lessnick SL . (2006). NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma. Mol Cancer Res4: 851–859. ArticleCASPubMed Google Scholar
Kovar H . (1998). Ewing's sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol10: 334–342. ArticleCASPubMed Google Scholar
Kovar H . (2005). Context matters: the hen or egg problem in Ewing's sarcoma. Semin Cancer Biol15: 189–196. ArticleCASPubMed Google Scholar
Lalli E, Sassone-Corsi P . (2003). DAX-1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol Endocrinol17: 1445–1453. ArticleCASPubMed Google Scholar
Luckow B, Schutz G . (1987). CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res15: 5490. ArticleCASPubMedPubMed Central Google Scholar
Mendiola M, Carrillo J, Garcia E, Lalli E, Hernandez T, De Alava E et al. (2006). The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer118: 1381–1389. ArticleCASPubMed Google Scholar
Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X et al. (2003). Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem278: 15105–15115. ArticleCASPubMed Google Scholar
Nishimori H, Sasaki Y, Yoshida K, Irifune H, Zembutsu H, Tanaka T et al. (2002). The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene21: 8302–8309. ArticleCASPubMed Google Scholar
Prieur A, Tirode F, Cohen P, Delattre O . (2004). EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol24: 7275–7283. ArticleCASPubMedPubMed Central Google Scholar
Reiner A, Yekutieli D, Benjamini Y . (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics19: 368–375. ArticleCASPubMed Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques34: 374–378. ArticleCASPubMed Google Scholar
Song KH, Park YY, Park KC, Hong CY, Park JH, Shong M et al. (2004). The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol Endocrinol18: 1929–1940. ArticleCASPubMed Google Scholar
Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G et al. (2004). DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res64: 8213–8221. ArticleCASPubMed Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA102: 15545–15550. ArticleCASPubMedPubMed Central Google Scholar
Suzuki T, Kasahara M, Yoshioka H, Umesono K, Morohashi K . (2002). LXXLL motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Endocr Res28: 537. ArticlePubMed Google Scholar
Tamai KT, Monaco L, Alastalo TP, Lalli E, Parvinen M, Sassone-Corsi P . (1996). Hormonal and developmental regulation of DAX-1 expression in Sertoli cells. Mol Endocrinol10: 1561–1569. CASPubMed Google Scholar
Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y . (1997). EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest99: 239–247. ArticleCASPubMedPubMed Central Google Scholar
Wasylyk B, Hahn SL, Giovane A . (1993). The Ets family of transcription factors. Eur J Biochem211: 7–18. ArticleCASPubMed Google Scholar
Welford SM, Hebert SP, Deneen B, Arvand A, Denny CT . (2001). DNA binding domain-independent pathways are involved in EWS/FLI1-mediated oncogenesis. J Biol Chem276: 41977–41984. ArticleCASPubMed Google Scholar
Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W et al. (1994). An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature372: 635–641. ArticleCASPubMed Google Scholar
Zhang H, Thomsen JS, Johansson L, Gustafsson JA, Treuter E . (2000). DAX-1 functions as an LXXLL-containing corepressor for activated estrogen receptors. J Biol Chem275: 39855–39859. ArticleCASPubMed Google Scholar