Recent advances in the molecular pathogenesis of Ewing's sarcoma (original) (raw)
References
Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M . (1991). MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer67: 1886–1893. CAS Google Scholar
Amiel A, Ohali A, Fejgin M, Sardos-Albertini F, Bouaron N, Cohen IJ et al. (2003). Molecular cytogenetic parameters in Ewing sarcoma. Cancer Genet Cytogenet140: 107–112. CAS Google Scholar
Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Bohling T et al. (1997). Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer75: 1403–1409. CAS Google Scholar
Arndt CA, Crist WM . (1999). Common musculoskeletal tumors of childhood and adolescence. N Engl J Med341: 342–352. CAS Google Scholar
Bachmaier R, Aryee DN, Jug G, Kauer M, Kreppel M, Lee KA et al. (2009). O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing's sarcoma. Oncogene28: 1280–1284. CAS Google Scholar
Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M et al. (1994). DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol14: 3230–3241. ArticleCAS Google Scholar
Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W et al. (2009). GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem284: 9074–9082. CAS Google Scholar
Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M et al. (2001). Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells. Clin Cancer Res7: 1790–1797. CAS Google Scholar
Benjamin RS, Gore L, Dias C, Warren TL, Naing A, Dhillon N et al. (2007). Activity of R1507, a fully humanized monoclonal antibody IGF-1R antagonist, in patients with Ewing's sarcoma noted in a phase I study. Connective Tissue Oncology Society 14th Annual Meeting: Seattle WA.
Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L . (1998). EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol18: 1489–1497. CAS Google Scholar
Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev20: 1123–1136. CAS Google Scholar
Braunreiter CL, Hancock JD, Coffin CM, Boucher KM, Lessnick SL . (2006). Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing's sarcoma. Cell Cycle5: 2753–2759. CAS Google Scholar
Brisset S, Schleiermacher G, Peter M, Mairal A, Oberlin O, Delattre O et al. (2001). CGH analysis of secondary genetic changes in Ewing tumors: correlation with metastatic disease in a series of 43 cases. Cancer Genet Cytogenet130: 57–61. CAS Google Scholar
Brownhill SC, Taylor C, Burchill SA . (2007). Chromosome 9p21 gene copy number and prognostic significance of p16 in ESFT. Br J Cancer96: 1914–1923. CAS Google Scholar
Burdach S, Plehm S, Unland R, Dirksen U, Borkhardt A, Staege MS et al. (2009). Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2. Cell Cycle8: 1991–1996. CAS Google Scholar
Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria Jr RL . (2005). Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Res65: 8698–8705. CAS Google Scholar
Cavazzana AO, Magnani JL, Ross RA, Miser J, Triche TJ . (1988). Ewing's sarcoma is an undifferentiated neuroectodermal tumor. Prog Clin Biol Res271: 487–498. CAS Google Scholar
Chansky HA, Barahmand-Pour F, Mei Q, Kahn-Farooqi W, Zielinska-Kwiatkowska A, Blackburn M et al. (2004). Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro. J Orthop Res22: 910–917. CAS Google Scholar
Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M . (2009). Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett279: 126–136. CAS Google Scholar
Cironi L, Riggi N, Provero P, Wolf N, Suva ML, Suva D et al. (2008). IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells. PLoS One3: e2634. Google Scholar
Codrington R, Pannell R, Forster A, Drynan LF, Daser A, Lobato N et al. (2005). The Ews-ERG fusion protein can initiate neoplasia from lineage-committed haematopoietic cells. PLoS Biol3: e242. Google Scholar
Comstock KE, Widersten M, Hao XY, Henner WD, Mannervik B . (1994). A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. Arch Biochem Biophys311: 487–495. CAS Google Scholar
Dahlin DC, Coventry MB, Scanlon PW . (1961). Ewing's sarcoma. A critical analysis of 165 cases. J Bone Joint Surg Am43-A: 185–192. CAS Google Scholar
de Alava E, Antonescu CR, Panizo A, Leung D, Meyers PA, Huvos AG et al. (2000). Prognostic impact of p53 status in Ewing sarcoma. Cancer89: 783–792. CAS Google Scholar
Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. (1992). Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature359: 162–165. CAS Google Scholar
Deneen B, Denny CT . (2001). Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene20: 6731–6741. CAS Google Scholar
Dickman PS, Liotta LA, Triche TJ . (1982). Ewing's sarcoma: characterization in established cultures and evidence of its histogenesis. Lab Invest47: 375–382. CAS Google Scholar
Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J et al. (2008). BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res68: 6507–6515. CAS Google Scholar
Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L et al. (2009). A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med15: 750–756. CAS Google Scholar
Ewing J . (1921). Diffuse endothelioma of bone. Proc NY Pathol Soc21: 17–24. Google Scholar
Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ . (1991). Immunohistochemical analysis of Ewing's sarcoma cell surface antigen p30/32MIC2. Am J Pathol139: 317–325. CAS Google Scholar
Ferreira BI, Alonso J, Carrillo J, Acquadro F, Largo C, Suela J et al. (2008). Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma. Oncogene27: 2084–2090. CAS Google Scholar
Fuchs B, Inwards C, Scully SP, Janknecht R . (2004a). hTERT is highly expressed in Ewing's sarcoma and activated by EWS-ETS oncoproteins. Clin Orthop Relat Res426: 64–68. Google Scholar
Fuchs B, Inwards CY, Janknecht R . (2004b). Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing's sarcoma. Clin Cancer Res10: 1344–1353. CAS Google Scholar
Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL . (2010). Emergent properties of EWS/FLI regulation via GGAA-microsatellites in Ewing's sarcoma. Genes Cancer2: 177–187. Google Scholar
Gangwal K, Lessnick SL . (2008). Microsatellites are EWS/FLI response elements: genomic ‘junk’ is EWS/FLI's treasure. Cell Cycle7: 3127–3132. CAS Google Scholar
Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al. (2008). Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci USA105: 10149–10154. CAS Google Scholar
Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O . (2009). The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS ONE4: e4932. Google Scholar
Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG et al. (1999). Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet23: 222–227. CAS Google Scholar
Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR . (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell11: 375–388. CAS Google Scholar
Hamilton G, Mallinger R, Hofbauer S, Havel M . (1991). The monoclonal HBA-71 antibody modulates proliferation of thymocytes and Ewing's sarcoma cells by interfering with the action of insulin-like growth factor I. Thymus18: 33–41. CAS Google Scholar
Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell100: 57–70. CAS Google Scholar
Hancock JD, Lessnick SL . (2008). A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle7: 250–256. CAS Google Scholar
Hattinger CM, Potschger U, Tarkkanen M, Squire J, Zielenska M, Kiuru-Kuhlefelt S et al. (2002). Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer86: 1763–1769. CAS Google Scholar
Herrero-Martin D, Osuna D, Ordonez JL, Sevillano V, Martins AS, Mackintosh C et al. (2009). Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer101: 80–90. CAS Google Scholar
Horowitz ME, Malawer MM, Woo SY, Hicks MJ . (1997). Ewing's sarcoma family of tumors: Ewing's sarcoma of bone and soft tissue and the peripheral primitive neuroectodermal tumors. In: Pizzo PA, Poplack DG (eds). Principles and Practice of Pediatric Oncology, 3rd edn. Lippincott-Raven Publishers: Philadelphia, pp 831–863. Google Scholar
Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ . (2005). EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res65: 4633–4644. CAS Google Scholar
Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH et al. (2005). Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol23: 548–558. CAS Google Scholar
Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT et al. (1995). A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene10: 1229–1234. CAS Google Scholar
Joo J, Christensen L, Warner K, States L, Kang HG, Vo K et al. (2009). GLI1 is a central mediator of EWS/FLI1 signaling in Ewing tumors. PLoS One4: e7608. Google Scholar
Kadin ME, Bensch KG . (1971). On the origin of Ewing's tumor. Cancer27: 257–273. CAS Google Scholar
Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y et al. (1996). Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer15: 115–121. CAS Google Scholar
Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA et al. (2007). E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res67: 3094–3105. CAS Google Scholar
Kauer M, Ban J, Kofler R, Walker B, Davis S, Meltzer P et al. (2009). A molecular function map of Ewing's sarcoma. PLoS ONE4: e5415. Google Scholar
Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . (2004a). Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev18: 2614–2626. CAS Google Scholar
Keller C, Hansen MS, Coffin CM, Capecchi MR . (2004b). Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev18: 2608–2613. CAS Google Scholar
Kinsey M, Smith R, Iyer AK, McCabe ER, Lessnick SL . (2009). EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing's sarcoma. Cancer Res69: 9047–9055. CAS Google Scholar
Kinsey M, Smith R, Lessnick SL . (2006). NR0B1 Is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's Sarcoma. Mol Cancer Res4: 851–859. CAS Google Scholar
Klevernic IV, Morton S, Davis RJ, Cohen P . (2009). Phosphorylation of Ewing's sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem J418: 625–634. CAS Google Scholar
Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock R, Carol H et al. (2008). Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer50: 1190–1197. Google Scholar
Kovar H . (1998). Ewing's sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol10: 334–342. CAS Google Scholar
Kovar H . (2005). Context matters: the hen or egg problem in Ewing's sarcoma. Semin Cancer Biol15: 189–196. CAS Google Scholar
Kovar H, Bernard A . (2006). CD99-positive ‘Ewing's sarcoma’ from mouse-bone marrow-derived mesenchymal progenitor cells? Cancer Res66: 9786. author reply 9786. CAS Google Scholar
Kovar H, Dworzak M, Strehl S, Schnell E, Ambros IM, Ambros PF et al. (1990). Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor. Oncogene5: 1067–1070. CAS Google Scholar
Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al. (1997). Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene15: 2225–2232. CAS Google Scholar
Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ . (2009). The insulin-like growth factor-1 receptor-targeting antibody, CP-751 871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res69: 7662–7671. CAS Google Scholar
Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol25: 1468–1475. CAS Google Scholar
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell125: 301–313. CAS Google Scholar
Lessnick SL, Braun BS, Denny CT, May WA . (1995). Multiple domains mediate transformation by the Ewing′s sarcoma EWS/FLI- 1 fusion gene. Oncogene10: 423–431. CAS Google Scholar
Lessnick SL, Dacwag CS, Golub TR . (2002). The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell1: 393–401. CAS Google Scholar
Lin PP, Pandey MK, Jin F, Xiong S, Deavers M, Parant JM et al. (2008). EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model. Cancer Res68: 8968–8975. CAS Google Scholar
Linabery AM, Ross JA . (2008). Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer113: 2575–2596. Google Scholar
Lipinski M, Braham K, Philip I, Wiels J, Philip T, Dellagi K et al. (1986). Phenotypic characterization of Ewing sarcoma cell lines with monoclonal antibodies. J Cell Biochem31: 289–296. CAS Google Scholar
Lipinski M, Braham K, Philip I, Wiels J, Philip T, Goridis C et al. (1987a). Neuroectoderm-associated antigens on Ewing's sarcoma cell lines. Cancer Res47: 183–187. CAS Google Scholar
Lipinski M, Hirsch MR, Deagostini-Bazin H, Yamada O, Tursz T, Goridis C . (1987b). Characterization of neural cell adhesion molecules (NCAM) expressed by Ewing and neuroblastoma cell lines. Int J Cancer40: 81–86. CAS Google Scholar
Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lessnick SL . (2009). GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing′s sarcoma oncogenesis and therapeutic resistance. Oncogene28: 4126–4132. CAS Google Scholar
Manara MC, Nicoletti G, Zambelli D, Ventura S, Guerzoni C, Landuzzi L et al. (2010). NVP-BEZ235 as a new therapeutic option for sarcomas. Clin Cancer Res16: 530–540. CAS Google Scholar
Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB . (1994). The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem269: 18216–18222. CAS Google Scholar
Maurici D, Perez-Atayde A, Grier HE, Baldini N, Serra M, Fletcher JA . (1998). Frequency and implications of chromosome 8 and 12 gains in Ewing sarcoma. Cancer Genet Cytogenet100: 106–110. CAS Google Scholar
May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT . (1997). EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet17: 495–497. CAS Google Scholar
May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O et al. (1993a). Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA90: 5752–5756. CAS Google Scholar
May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB et al. (1993b). The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol13: 7393–7398. CAS Google Scholar
Meyers PA, Levy AS . (2000). Ewing's sarcoma. Curr Treat Options Oncol1: 247–257. CAS Google Scholar
Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T et al. (2008). Inducible expression of chimeric EWS/ETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol28: 2125–2137. CAS Google Scholar
Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X et al. (2003). Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem278: 15105–15115. CAS Google Scholar
Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB et al. (2008). Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res14: 4572–4583. CAS Google Scholar
Ng TL, O′Sullivan M J, Pallen CJ, Hayes M, Clarkson PW, Winstanley M et al. (2007). Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn9: 459–463. Google Scholar
Ohali A, Avigad S, Cohen IJ, Meller I, Kollender Y, Issakov J et al. (2003). Association between telomerase activity and outcome in patients with nonmetastatic Ewing family of tumors. J Clin Oncol21: 3836–3843. CAS Google Scholar
Ohno T, Rao VN, Reddy ES . (1993). EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res53: 5859–5863. CAS Google Scholar
Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML et al. (2009). Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751 871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol11: 129–135. Google Scholar
Olsen RJ, Hinrichs SH . (2001). Phosphorylation of the EWS IQ domain regulates transcriptional activity of the EWS/ATF1 and EWS/FLI1 fusion proteins. Oncogene20: 1756–1764. CAS Google Scholar
Owen LA, Kowalewski AA, Lessnick SL . (2008). EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS One3: e1965. Google Scholar
Owen LA, Lessnick SL . (2006). Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's sarcoma. Cell Cycle5: 2049–2053. CAS Google Scholar
Ozaki T, Paulussen M, Poremba C, Brinkschmidt C, Rerin J, Ahrens S et al. (2001). Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Genes Chromosomes Cancer32: 164–171. CAS Google Scholar
Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H et al. (1997). A new member of the ETS family fused to EWS in Ewing tumors. Oncogene14: 1159–1164. CAS Google Scholar
Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H . (1998). Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene17: 603–610. CAS Google Scholar
Prieur A, Tirode F, Cohen P, Delattre O . (2004). EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol24: 7275–7283. CAS Google Scholar
Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K, Garcia-Echeverria C et al. (2005). Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res65: 11459–11468. CAS Google Scholar
Riggi N, Suva ML, Stamenkovic I . (2009). Ewing's sarcoma origin: from duel to duality. Expert Rev Anticancer Ther9: 1025–1030. Google Scholar
Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S et al. (2008). EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res68: 2176–2185. CAS Google Scholar
Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al. (2008). Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group. Genes Chromosomes Cancer47: 207–220. CAS Google Scholar
Rocchi A, Manara MC, Sciandra M, Zambelli D, Nardi F, Nicoletti G et al. (2010). CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest120: 668–680. CAS Google Scholar
Rorie CJ, Thomas VD, Chen P, Pierce HH, O'Bryan JP, Weissman BE . (2004). The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res64: 1266–1277. CAS Google Scholar
Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D et al. (2008). Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA105: 6004–6009. CAS Google Scholar
Savola S, Klami A, Tripathi A, Niini T, Serra M, Picci P et al. (2009). Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer9: 17. Google Scholar
Schuck A, Poremba C, Lanvers C, Konemann S, Schleifer T, Wai D et al. (2002). Radiation-induced changes of telomerase activity in a human Ewing xenograft tumor. Strahlenther Onkol178: 701–708. Google Scholar
Scotlandi K, Avnet S, Benini S, Manara MC, Serra M, Cerisano V et al. (2002a). Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer101: 11–16. CAS Google Scholar
Scotlandi K, Baldini N, Cerisano V, Manara MC, Benini S, Serra M et al. (2000). CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res60: 5134–5142. CAS Google Scholar
Scotlandi K, Benini S, Nanni P, Lollini PL, Nicoletti G, Landuzzi L et al. (1998). Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing′s sarcoma in athymic mice. Cancer Res58: 4127–4131. CAS Google Scholar
Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D et al. (1996). Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res56: 4570–4574. CAS Google Scholar
Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V et al. (2002b). Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther9: 296–307. CAS Google Scholar
Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. (2005). Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res65: 3868–3876. CAS Google Scholar
Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L et al. (2009). Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol27: 2209–2216. CAS Google Scholar
Selvarajah S, Yoshimoto M, Prasad M, Shago M, Squire JA, Zielenska M et al. (2007). Characterization of trisomy 8 in pediatric undifferentiated sarcomas using advanced molecular cytogenetic techniques. Cancer Genet Cytogenet174: 35–41. CAS Google Scholar
Seth A, Watson DK . (2005). ETS transcription factors and their emerging roles in human cancer. Eur J Cancer41: 2462–2478. CAS Google Scholar
Sharrocks AD . (2001). The ETS-domain transcription factor family. Nat Rev Mol Cell Biol2: 827–837. CAS Google Scholar
Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J et al. (2003). FUS/ERG gene fusions in Ewing's tumors. Cancer Res63: 4568–4576. CAS Google Scholar
Shing DC, Morley-Jacob CA, Roberts I, Nacheva E, Coleman N . (2002). Ewing's tumour: novel recurrent chromosomal abnormalities demonstrated by molecular cytogenetic analysis of seven cell lines and one primary culture. Cytogenet Genome Res97: 20–27. CAS Google Scholar
Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. (2006). Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell9: 405–416. CAS Google Scholar
Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA et al. (1998). Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. Am J Pathol153: 1937–1945. CAS Google Scholar
Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT . (1994). A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet6: 146–151. CAS Google Scholar
Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G et al. (2004). DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res64: 8213–8221. CAS Google Scholar
Stegmaier K, Wong JS, Ross KN, Chow KT, Peck D, Wright RD et al. (2007). Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med4: e122. Google Scholar
Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM et al. (2009). Identification of cancer stem cells in Ewing's sarcoma. Cancer Res69: 1776–1781. CAS Google Scholar
Szymczyna BR, Arrowsmith CH . (2000). DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein-DNA recognition. J Biol Chem275: 28363–28370. CAS Google Scholar
Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell129: 1377–1388. CAS Google Scholar
Tan AY, Manley JL . (2009). The TET family of proteins: functions and roles in disease. J Mol Cell Biol1: 82–92. CAS Google Scholar
Tarkkanen M, Kiuru-Kuhlefelt S, Blomqvist C, Armengol G, Bohling T, Ekfors T et al. (1999). Clinical correlations of genetic changes by comparative genomic hybridization in Ewing sarcoma and related tumors. Cancer Genet Cytogenet114: 35–41. CAS Google Scholar
Teitell MA, Thompson AD, Sorensen PH, Shimada H, Triche TJ, Denny CT . (1999). EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts. Lab Invest79: 1535–1543. CAS Google Scholar
Terrier P, Llombart-Bosch A, Contesso G . (1996). Small round blue cell tumors in bone: prognostic factors correlated to Ewing′s sarcoma and neuroectodermal tumors. Semin Diagn Pathol13: 250–257. CAS Google Scholar
Thompson AD, Teitell MA, Arvand A, Denny CT . (1999). Divergent Ewing's sarcoma EWS/ETS fusions confer a common tumorigenic phenotype on NIH3T3 cells. Oncogene18: 5506–5513. CAS Google Scholar
Tirado OM, Mateo-Lozano S, Villar J, Dettin LE, Llort A, Gallego S et al. (2006). Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells. Cancer Res66: 9937–9947. CAS Google Scholar
Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell11: 421–429. CAS Google Scholar
Tolcher AW, Rothenberg ML, Rodon J, Delbeke D, Patnaik A, Nguyen L et al. (2007). A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J Clin Oncol, 2007 ASCO Annual Meeting, Chicago, IL. Proceedings Part I. 25, No. 18S (June 20 Supplement): 3002.
Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B et al. (2006). Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet38: 694–699. CAS Google Scholar
Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ . (2007). EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol27: 7918–7934. CAS Google Scholar
Torchia EC, Jaishankar S, Baker SJ . (2003). Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res63: 3464–3468. CAS Google Scholar
Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP et al. (2006). Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res66: 5574–5581. CAS Google Scholar
Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ . (1997). The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem272: 30822–30827. CAS Google Scholar
Triche TJ, Askin FB, Kissane JM . (1987). Neuroblastoma, Ewing's sarcoma, and the differential diagnosis of small-, round-, blue-cell tumors. In: Feingold M, Benningtion JC (eds). Major Problems in Pathology. Saunders: Philadelphia, pp 145–195. Google Scholar
Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C et al. (1988). Chromosomes in Ewing's sarcoma.I An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet32: 229–238. CAS Google Scholar
Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir GM . (1984). Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet12: 1–19. CAS Google Scholar
van Valen F, Winkelmann W, Jurgens H . (1992). Type I and type II insulin-like growth factor receptors and their function in human Ewing's sarcoma cells. J Cancer Res Clin Oncol118: 269–275. CAS Google Scholar
Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer2: 489–501. CAS Google Scholar
Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. (2008). Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev22: 1662–1676. CAS Google Scholar
Wang CC, Schulz MD . (1953). Ewing's sarcoma; a study of fifty cases treated at the Massachusetts General Hospital, 1930–1952 inclusive. N Engl J Med248: 571–576. CAS Google Scholar
Wang X, Arai S, Song X, Reichart DD, Du K, Pascual G et al. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454: 126–130. CAS Google Scholar
Wei G, Antonescu CR, de Alava E, Leung D, Huvos AG, Meyers PA et al. (2000). Prognostic impact of INK4A deletion in Ewing sarcoma. Cancer89: 793–799. CAS Google Scholar
Whang-Peng J, Triche TJ, Knutsen T, Miser JS, Kao-Shan S, Tsai S et al. (1984). Chromosome translocation in peripheral neuroepithelioma. N Engl J Med311: 584–585. CAS Google Scholar
Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP et al. (1990). Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest86: 1806–1814. CAS Google Scholar
Zhang J, Hu S, Schofield DE, Sorensen PH, Triche TJ . (2004). Selective usage of D-Type cyclins by Ewing's tumors and rhabdomyosarcomas. Cancer Res64: 6026–6034. CAS Google Scholar
Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ et al. (2008). The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene27: 3282–3291. CAS Google Scholar