Reversion-inducing cysteine-rich protein with Kazal motifs interferes with epidermal growth factor receptor signaling (original) (raw)
Andratschke NH, Dittmann KH, Mason KA, Fan Z, Liao Z, Komaki R et al. (2004). Epidermal growth factor receptor as a target to improve treatment of lung cancer. Clin Lung Cancer5: 340–352. ArticleCAS Google Scholar
Anker P, Lyautey J, Lefort F, Lederrey C, Stroun M . (1994). Transformation of NIH/3T3 cells and SW 480 cells displaying K-ras mutation. C R Acad Sci III317: 869–874. CASPubMed Google Scholar
Bardeesy N, Sharpless NE . (2006). RAS unplugged: negative feedback and oncogene-induced senescence. Cancer Cell10: 451–453. ArticleCAS Google Scholar
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature444: 633–637. ArticleCAS Google Scholar
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436: 660–665. ArticleCAS Google Scholar
Chang HC, Cho CY, Hung WC . (2006). Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res66: 8413–8420. ArticleCAS Google Scholar
Chang HC, Cho CY, Hung WC . (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Sci98: 169–173. ArticleCAS Google Scholar
Chang HC, Liu LT, Hung WC . (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal16: 675–679. ArticleCAS Google Scholar
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436: 725–730. ArticleCAS Google Scholar
Cichowski K, Jacks T . (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell104: 593–604. ArticleCAS Google Scholar
Clark JC, Thomas DM, Choong PF, Dass CR . (2007). RECK--a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev26: 675–683. ArticleCAS Google Scholar
Collado M, Serrano M . (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer10: 51–57. ArticleCAS Google Scholar
Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell10: 459–472. ArticleCAS Google Scholar
Courtois-Cox S, Jones SL, Cichowski K . (2008). Many roads lead to oncogene-induced senescence. Oncogene27: 2801–2809. ArticleCAS Google Scholar
D'Souza B, Miyamoto A, Weinmaster G . (2008). The many facets of Notch ligands. Oncogene27: 5148–5167. ArticleCAS Google Scholar
Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell82: 675–684. ArticleCAS Google Scholar
Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature444: 638–642. ArticleCAS Google Scholar
Gross I, Bassit B, Benezra M, Licht JD . (2001). Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem276: 46460–46468. ArticleCAS Google Scholar
Hatta M, Matsuzaki T, Morioka Y, Yoshida Y, Noda M . (2009). Density- and serum-dependent regulation of the Reck tumor suppressor in mouse embryo fibroblasts. Cell Signal21: 1885–1893. ArticleCAS Google Scholar
Hsu MC, Chang HC, Hung WC . (2006). HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J Biol Chem281: 4718–4725. ArticleCAS Google Scholar
Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW et al. (2008). MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem283: 23473–23484. ArticleCAS Google Scholar
Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S . (1997). Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem272: 22389–22392. ArticleCAS Google Scholar
Jänne PA . (2005). Ongoing first-line studies of epidermal growth factor receptor tyrosine kinase inhibitors in select patient populations. Semin Oncol32: S9–S15. Article Google Scholar
Jodele S, Blavier L, Yoon JM, DeClerck YA . (2006). Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev25: 35–43. ArticleCAS Google Scholar
Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91: 649–659. CASPubMed Google Scholar
Kim HJ, Bar-Sagi D . (2004). Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol5: 441–450. ArticleCAS Google Scholar
Liu LT, Peng JP, Chang HC, Hung WC . (2003). RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene22: 8263–8270. ArticleCAS Google Scholar
Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M . (2010). Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene29: 2638–2648. ArticleCAS Google Scholar
Long NK, Kato K, Yamashita T, Makita H, Toida M, Hatakeyama D et al. (2008). Hypermethylation of the RECK gene predicts poor prognosis in oral squamous cell carcinomas. Oral Oncol44: 1052–1058. ArticleCAS Google Scholar
Lyons JG, Birkedal-Hansen B, Pierson MC, Whitelock JM, Birkedal-Hansen H . (1993). Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95,000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocytes. J Biol Chem268: 19143–19151. CASPubMed Google Scholar
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436: 720–724. ArticleCAS Google Scholar
Miki T, Takegami Y, Okawa K, Muraguchi T, Noda M, Takahashi C . (2007). The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J Biol Chem282: 12341–12352. ArticleCAS Google Scholar
Miki T, Shamma A, Kitajima S, Takegami Y, Noda M, Nakashima Y et al. (2010). The beta1-integrin-dependent function of RECK in physiologic and tumor angiogenesis. Mol Cancer Res8: 665–676. ArticleCAS Google Scholar
Morioka Y, Monypenny J, Matsuzaki T, Shi S, Alexander DB, Kitayama H et al. (2009). The membrane-anchored metalloproteinase regulator RECK stabilizes focal adhesions and anterior-posterior polarity in fibroblasts. Oncogene28: 1454–1464. ArticleCAS Google Scholar
Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A et al. (2007). RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci10: 838–845. ArticleCAS Google Scholar
Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer9: 293–302. ArticleCAS Google Scholar
Noda M, Takahashi C . (2007). Recklessness as a hallmark of aggressive cancer. Cancer Sci98: 1659–1665. ArticleCAS Google Scholar
Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell107: 789–800. ArticleCAS Google Scholar
Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A et al. (2004). Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene23: 5041–5048. ArticleCAS Google Scholar
Omura A, Matsuzaki T, Mio K, Ogura T, Yamamoto M, Fujita A et al. (2009). RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin. J Biol Chem284: 3461–3469. ArticleCAS Google Scholar
Rabien A, Burkhardt M, Jung M, Fritzsche F, Ringsdorf M, Schicktanz H et al. (2007). Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy. Eur Urol51: 1259–1266. ArticleCAS Google Scholar
Rahmah NN, Sakai K, Nakayama J, Hongo K . (2009). Reversion-inducing cysteine-rich protein with kazal motifs and matrix metalloproteinase-9 are prognostic markers in skull base chordomas. Neurosurg Rev173: 167–173. Google Scholar
Sasahara RM, Takahashi C, Noda M . (1999). Involvement of the Sp1 site in ras-mediated downregulation of the RECK metastasis suppressor gene. Biochem Biophys Res Commun264: 668–675. ArticleCAS Google Scholar
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88: 593–602. ArticleCAS Google Scholar
Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T et al. (2009). Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-Ras isoprenylation. Cancer Cell15: 255–269. ArticleCAS Google Scholar
Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. (2001). Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature413: 86–91. ArticleCAS Google Scholar
Takagi S, Simizu S, Osada H . (2009). RECK negatively regulates matrix metalloproteinase-9 transcription. Cancer Res69: 1502–1508. ArticleCAS Google Scholar
Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA95: 13221–13226. ArticleCAS Google Scholar
Takemoto N, Tada M, Hida Y, Asano T, Cheng S, Kuramae T et al. (2007). Low expression of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) indicates a shorter survival after resection in patients with adenocarcinoma of the lung. Lung Cancer58: 376–383. Article Google Scholar
Takenaka K, Ishikawa S, Kawano Y, Yanagihara K, Miyahara R, Otake Y et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. Eur J Cancer40: 1617–1623. ArticleCAS Google Scholar
Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, Hasegawa S, Otake Y et al. (2005). Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer. Ann Surg Oncol12: 817–824. Article Google Scholar
Todaro GJ, Green H . (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol17: 299–313. ArticleCAS Google Scholar
Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T et al. (1993). Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene8: 3313–3322. CASPubMed Google Scholar
Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol10: 361–369. ArticleCAS Google Scholar
Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W et al. (2008). miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest88: 1358–1366. ArticleCAS Google Scholar
Zolkiewska A . (2008). ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci65: 2056–2068. ArticleCAS Google Scholar