- Bennett DC . (1983). Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell 34: 445–453.
Article CAS Google Scholar
- Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40: 499–507.
Article CAS Google Scholar
- Boiko AD, Razorenova OV, van de RM, Swetter SM, Johnson DL, Ly DP et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466: 133–137.
Article CAS Google Scholar
- Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H et al. (2009). Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27: 1033–1037.
Article CAS Google Scholar
- Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283: 17969–17978.
Article CAS Google Scholar
- Chen Z, Xu WR, Qian H, Zhu W, Bu XF, Wang S et al. (2009). Oct4, a novel marker for human gastric cancer. J Surg Oncol 99: 414–419.
Article CAS Google Scholar
- Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557–570.
Article CAS Google Scholar
- Daley GQ . (2008). Common themes of dedifferentiation in somatic cell reprogramming and cancer. Cold Spring Harb Symp Quant Biol 73: 171–174.
Article CAS Google Scholar
- Gabbert H, Wagner R, Moll R, Gerharz CD . (1985). Tumor dedifferentiation: an important step in tumor invasion. Clin Exp Metastasis 3: 257–279.
Article CAS Google Scholar
- Hanna J, Saha K, Pando B, van ZJ, Lengner CJ, Creyghton MP et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462: 595–601.
Article CAS Google Scholar
- Helczynska K, Kronblad A, Jogi A, Nilsson E, Beckman S, Landberg G et al. (2003). Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 63: 1441–1444.
CAS PubMed Google Scholar
- Hochedlinger K, Yamada Y, Beard C, Jaenisch R . (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121: 465–477.
Article CAS Google Scholar
- Hu L, McArthur C, Jaffe RB . (2010). Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102: 1276–1283.
Article CAS Google Scholar
- Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S . (2008). Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68: 6533–6540.
Article CAS Google Scholar
- Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L et al. (2002). Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99: 7021–7026.
Article CAS Google Scholar
- Kang SK, Park JB, Cha SH . (2006). Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev 15: 423–435.
Article CAS Google Scholar
- Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460: 1140–1144.
Article CAS Google Scholar
- Kim JB, Greber B, raùzo-Bravo MJ, Meyer J, Park KI, Zaehres H et al. (2009a). Direct reprogramming of human neural stem cells by OCT4. Nature 461: 649–643.
Article CAS Google Scholar
- Kim JB, Sebastiano V, Wu G, rauzo-Bravo MJ, Sasse P, Gentile L et al. (2009b). Oct4-induced pluripotency in adult neural stem cells. Cell 136: 411–419.
Article CAS Google Scholar
- Kumar SM, Yu H, Edwards R, Chen L, Kazianis S, Brafford P et al. (2007). Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 67: 3177–3184.
Article CAS Google Scholar
- Li W, Zhou H, Abujarour R, Zhu S, Young JJ, Lin T et al. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27: 2992–3000.
CAS PubMed PubMed Central Google Scholar
- Li Z, Rich JN . (2010). Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 345: 21–30.
CAS PubMed Google Scholar
- Liu T, Xu F, Du X, Lai D, Liu T, Zhao Y et al. (2010). Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Mol Cell Biochem 340: 265–273.
Article CAS Google Scholar
- Lobo NA, Shimono Y, Qian D, Clarke MF . (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23: 675–699.
Article CAS Google Scholar
- Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P et al. (2009). Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15: 2010–2021.
Article CAS Google Scholar
- Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.
Article CAS Google Scholar
- Masuda K, Richter M, Song X, Berezov A, Masuda K, Murali R et al. (2006). AHNP-streptavidin: a tetrameric bacterially produced antibody surrogate fusion protein against p185her2/neu. Oncogene 25: 7740–7746.
Article CAS Google Scholar
- Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43: 935–946.
Article CAS Google Scholar
- Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ . (2000). Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20: 7370–7376.
Article CAS Google Scholar
- Peng S, Maihle NJ, Huang Y . (2010). Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29: 2153–2159.
Article CAS Google Scholar
- Pollard TD, Borisy GG . (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112: 453–465.
Article CAS Google Scholar
- Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM et al. (2010). Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18: 510–523.
Article CAS Google Scholar
- Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . (2008). Efficient tumour formation by single human melanoma cells. Nature 456: 593–598.
Article CAS Google Scholar
- Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141: 583–594.
Article CAS Google Scholar
- Saigusa S, Tanaka K, Toiyama Y, Yokoe T, Okugawa Y, Ioue Y et al. (2009). Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 16: 3488–3498.
Article Google Scholar
- Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al. (2008). Identification of cells initiating human melanomas. Nature 451: 345–349.
Article CAS Google Scholar
- Schoenhals M, Kassambara A, De VJ, Hose D, Moreaux J, Klein B . (2009). Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 383: 157–162.
Article CAS Google Scholar
- Strizzi L, Abbott DE, Salomon DS, Hendrix MJ . (2008). Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle 7: 1931–1935.
Article CAS Google Scholar
- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872.
Article CAS Google Scholar
- Takahashi K, Yamanaka S . (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
Article CAS Google Scholar
- Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S et al. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41: 843–848.
Article CAS Google Scholar
- Yu H, Kumar SM, Kossenkov AV, Showe L, Xu X . (2009a). Stem cells with neural crest characteristics derived from the bulge reigon of cultured human hair follicles. J Invest Dermatol 130: 1227–1236.
Article Google Scholar
- Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. (2009b). Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797–801.
Article CAS Google Scholar
- Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ . (2005). High-efficiency RNA interference in human embryonic stem cells. Stem Cells 3: 299–305.
Article Google Scholar
- Zhang X, Han B, Huang J, Zheng B, Geng Q, Aziz F et al. (2010). Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn J Clin Oncol 40: 961–966.
Article Google Scholar
- Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T et al (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381–384.
Article CAS Google Scholar