- Cecchi F, Rabe DC, Bottaro DP . Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer 2010; 46: 1260–1270.
Article CAS Google Scholar
- Knudsen BS, Woude GV . Showering c-MET-dependent cancers with drugs. Curr opin Genetics Dev 2008; 18: 87–96.
Article CAS Google Scholar
- Lai AZ, Abella JV, Park M . Crosstalk in Met receptor oncogenesis. Trends Cell Biol 2009; 19: 542–551.
Article CAS Google Scholar
- Paliouras GN, Naujokas MA, Park M . Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 2009; 29: 3018–3032.
Article CAS Google Scholar
- Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998; 17: 6527–6540.
Article CAS Google Scholar
- Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T . PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 2005; 118: 1861–1872.
Article CAS Google Scholar
- Wells CM, Whale AD, Parsons M, Masters JR, Jones GE . PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J Cell Sci 2010; 123: 1663–1673.
Article Google Scholar
- Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y et al. p21-activated kinase 4 phosphorylation of integrin β5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285: 23699–23710.
Article CAS Google Scholar
- Dan C, Kelly A, Bernard O, Minden A . Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 2001; 276: 32115–32121.
Article CAS Google Scholar
- Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B et al. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 2005; 24: 473–486.
Article CAS Google Scholar
- Lai FPL, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 2008; 27: 982–992.
Article CAS Google Scholar
- Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 2004; 304: 743–746.
Article CAS Google Scholar
- Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277: 550–558.
Article CAS Google Scholar
- Liu Y, Xiao H, Tian Y, Nekrasova T, Hao X, Lee HJ et al. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res 2008; 6: 215–224.
Google Scholar
- Whale A, Hashim FN, Fram S, Jones GE, Wells CM . Signalling to cancer cell invasion through PAK family kinases. Front Biosci 2011; 16: 849–864.
Article CAS Google Scholar
- Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. Colorectal cancer: mutations in a signalling pathway. Nature 2005; 436: 792.
Article CAS Google Scholar
- Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik J, Ying H et al. Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci USA 2008; 105: 19372–19377.
Article CAS Google Scholar
- Li Z, Lock JG, Olofsson H, Kowalewski JM, Teller S, Liu Y et al. Integrin-mediated cell attachment induces a PAK4-dependent feedback loop regulating cell adhesion through modified integrin αvβ5 clustering and turnover. Mol Biol Cell 2010; 21: 3317–3329.
Article CAS Google Scholar
- Siu MKY, Chan HY, Konga DSH, Wong ESY, Wong OGW, Ngan HYS et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci USA 2010; 107: 18622–18627.
Article CAS Google Scholar
- Eswaran J, Soundararajan M, Knapp S . Targeting group II PAKs in cancer and metastasis. Cancer Metastasis Rev 2009; 28: 209–217.
Article CAS Google Scholar
- Zhao Z, Manser E . Do PAKs make good drug targets? Faculty of 1000 2010; 2: 70.
Google Scholar
- Murray BW, Guoa C, Piraino J, Westwick JK, Zhang C, Lamerdin J et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci USA 2010; 107: 9446–9451.
Article CAS Google Scholar
- Finkelstein E, Chang W, Chao P-HG, Gruber D, Minden A, Hung CT et al. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J Cell Sci 2004; 117: 1533–1545.
Article CAS Google Scholar
- Ahmed T, Shea K, Masters JR, Jones GE, Wells CMA . PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal 2008; 20: 1320–1328.
Article CAS Google Scholar
- Scott RW, Hooper S, Crighton D, Li A, König I, Munro J et al. LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J Cell Biol 2010; 191: 169–185.
Article CAS Google Scholar
- Yoshioka K, Foletta V, Bernard O, Itoh K . A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 2003; 100: 7247–7252.
Article CAS Google Scholar
- Baldassa S, Calogero AM, Colombo G, Zippel R, Gnesutta N . N-Terminal interaction domain implicates PAK4 in translational regulation and reveals novel cellular localization signals. J Cell Physiol 2010; 224: 722–733.
Article CAS Google Scholar
- Eswaran J, Lee WH, Debreczeni JE, Filippakopoulos P, Turnbull A, Fedorov O et al. Crystal structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure 2007; 15: 201–213.
Article CAS Google Scholar
- Grant BD, Hemmer W, Tsigelny I, Adams JA, Taylor SS . Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry 1998; 37: 7708–7715.
Article CAS Google Scholar
- Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y et al. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Mol Cell 2009; 33: 43–52.
Article CAS Google Scholar
- Griswold IJ, MacPartlin M, Bumm T, Goss VL, O’Hare T, Lee KA et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 2006; 26: 6082–6093.
Article CAS Google Scholar
- Yamamoto M, Kurosu T, Kakihana K, Mizuchi D, Miura O . The two major imatinib resistance mutations E255K and T315I enhance the activity of BCR/ABL fusion kinase. Biochem Biophys Res Commun 2004; 319: 1272–1275.
Article CAS Google Scholar
- Skaggs BJ, Gorre ME, Ryvkin A, Burgess MR, Xie Y, Han Y et al. Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proc Natl Acad Sci USA 2006; 103: 19466–19471.
Article CAS Google Scholar
- Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.
Article CAS Google Scholar
- Pavlovsky C, Kantarjian H, Cortes JE . First-line therapy for chronic myeloid leukemia: past, present, and future. Am J Hematol 2009; 84: 287–293.
Article CAS Google Scholar
- Girdler F, Sessa F, Patercoli S, Villa F, Musacchio A, Taylor S et al. Molecular basis of drug resistance in aurora kinases. Chem Biol 2008; 15: 552–562.
Article CAS Google Scholar
- Zicha D, Dunn G, Jones G . Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol 1997; 75: 449–57.
CAS PubMed Google Scholar