- Alberti C . Genetic and microenvironmental implications in prostate cancer progression and metastasis. Eur Rev Med Pharmacol Sci 2008; 12: 167–175.
CAS PubMed Google Scholar
- Graef IA, Chen F, Crabtree GR . NFAT signaling in vertebrate development. Curr Opin Genet Dev 2001; 11: 505–512.
Article CAS PubMed Google Scholar
- Pan MG, Xiong Y, Chen F . NFAT gene family in inflammation and cancer. Curr Mol Med 2013; 13: 543–554.
Article CAS PubMed PubMed Central Google Scholar
- Neal JW, Clipstone NA . A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 2003; 278: 17246–17254.
Article CAS PubMed Google Scholar
- Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 2006; 25: 3714–3724.
Article CAS PubMed PubMed Central Google Scholar
- Lehen'kyi V, Flourakis M, Skryma R, Prevarskaya N . TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 2007; 26: 7380–7385.
Article CAS PubMed Google Scholar
- Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H et al. The role of NFATc1 in prostate cancer progression: Cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate 2015; 75: 573–584.
Article CAS PubMed Google Scholar
- Lee SJ, Lee K, Yang X, Jung C, Gardner T, Kim HS et al. NFATc1 with AP-3 site binding specificity mediates gene expression of prostate-specific-membrane-antigen. J Mol Biol 2003; 330: 749–760.
Article CAS PubMed Google Scholar
- Rafiei S, Komarova SV . Molecular signaling pathways mediating osteoclastogenesis induced by prostate cancer cells. BMC Cancer 2013; 13: 605.
Article PubMed PubMed Central Google Scholar
- Kavitha CV, Deep G, Gangar SC, Jain AK, Agarwal C, Agarwal R . Silibinin inhibits prostate cancer cells- and RANKL-induced osteoclastogenesis by targeting NFATc1, NF-kappaB, and AP-1 activation in RAW264.7 cells. Mol Carcinog 2014; 53: 169–180.
Article CAS PubMed Google Scholar
- Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A . The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 2002; 4: 540–544.
Article CAS PubMed Google Scholar
- Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A . Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005; 20: 539–550.
Article CAS PubMed Google Scholar
- Yiu GK, Toker A . NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J Biol Chem 2006; 281: 12210–12217.
Article CAS PubMed Google Scholar
- Yiu GK, Kaunisto A, Chin YR, Toker A . NFAT promotes carcinoma invasive migration through glypican-6. Biochem J 2011; 440: 157–166.
Article CAS PubMed Google Scholar
- Foldynova-Trantirkova S, Sekyrova P, Tmejova K, Brumovska E, Bernatik O, Blankenfeldt W et al. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res 2010; 12: R30.
Article PubMed PubMed Central Google Scholar
- Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP . Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol 2008; 28: 7168–7181.
Article CAS PubMed PubMed Central Google Scholar
- Wang Y, Jarad G, Tripathi P, Pan M, Cunningham J, Martin DR et al. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J Am Soc Nephrol 2010; 21: 1657–1666.
Article CAS PubMed PubMed Central Google Scholar
- Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.
Article CAS PubMed PubMed Central Google Scholar
- Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 2009; 15: 5794–5802.
Article CAS PubMed PubMed Central Google Scholar
- Jiang J, Jia P, Zhao Z, Shen B . Key regulators in prostate cancer identified by co-expression module analysis. BMC Genomics 2014; 15: 1015.
Article PubMed PubMed Central Google Scholar
- Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 2001; 101: 61–69.
Article CAS PubMed Google Scholar
- Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F et al. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 2005; 33: e51.
Article PubMed PubMed Central Google Scholar
- Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR . Enhanced NFATc1 Nuclear Occupancy Causes T Cell Activation Independent of CD28 Costimulation. J Immunol 2007; 178: 4315–4321.
Article CAS PubMed Google Scholar
- Lagunas L, Clipstone NA . Deregulated NFATc1 activity transforms murine fibroblasts via an autocrine growth factor-mediated Stat3-dependent pathway. J Cell Biochem 2009; 108: 237–248.
Article CAS PubMed Google Scholar
- Tripathi P, Wang Y, Coussens M, Manda KR, Casey AM, Lin C et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 2014; 33: 1840–1849.
Article CAS PubMed Google Scholar
- Karlou M, Tzelepi V, Efstathiou E . Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 2010; 7: 494–509.
Article PubMed Google Scholar
- Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 2011; 470: 269–273.
Article CAS PubMed PubMed Central Google Scholar
- Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, Gonzalez Bosc LV, Smith ML et al. Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 2010; 30: 218–224.
Article CAS PubMed Google Scholar
- Torti D, Trusolino L . Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 2011; 3: 623–636.
Article CAS PubMed PubMed Central Google Scholar
- McCormick F . Cancer therapy based on oncogene addiction. J Surg Oncol 2011; 103: 464–467.
Article CAS PubMed Google Scholar
- Weinstein IB, Joe A . Oncogene addiction. Cancer Res 2008; 68: 3077–3080 discussion 3080.
Article CAS PubMed Google Scholar
- Suzman DL, Antonarakis ES . Castration-resistant prostate cancer: latest evidence and therapeutic implications. Ther Adv Med Oncol 2014; 6: 167–179.
Article PubMed PubMed Central Google Scholar
- Carnero A, Paramio JM . The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front Oncol 2014; 4: 252.
Article PubMed PubMed Central Google Scholar
- Ortega-Molina A, Serrano M . PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013; 24: 184–189.
Article CAS PubMed Google Scholar
- Blagosklonny MV . Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 2002; 1: 391–393.
Article CAS PubMed Google Scholar
- Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O et al. Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: NUPR1 and p21 in chemoresistance. FEBS Lett 2012; 586: 3429–3434.
Article CAS PubMed Google Scholar
- Culig Z . Proinflammatory cytokine interleukin-6 in prostate carcinogenesis. Am J Clin Exp Urol 2014; 2: 231–238.
PubMed PubMed Central Google Scholar
- Nguyen DP, Li J, Tewari AK . Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int 2014; 113: 986–992.
Article CAS PubMed Google Scholar
- Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2014; 34: 107–119.
Google Scholar
- Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 2001; 98: 7319–7324.
Article CAS PubMed PubMed Central Google Scholar
- Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189: 63–73.
Article CAS PubMed PubMed Central Google Scholar
- Phin S, Moore MW, Cotter PD . Genomic Rearrangements of PTEN in Prostate Cancer. Front Oncol 2013; 3: 240.
Article PubMed PubMed Central Google Scholar
- Wei Z, Jiang X, Qiao H, Zhai B, Zhang L, Zhang Q et al. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal 2013; 25: 931–938.
Article CAS PubMed Google Scholar
- Huang H, Zhao W, Yang D . Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells. Biochem Biophys Res Commun 2012; 418: 186–190.
Article CAS PubMed Google Scholar
- Janik P, Briand P, Hartmann NR . The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumors. Cancer Res 1975; 35: 3698–3704.
CAS PubMed Google Scholar
- Zhang H, Teng Y, Kong Y, Kowalski PE, Cohen SN . Suppression of human tumor cell proliferation by Smurf2-induced senescence. J Cell Physiol 2008; 215: 613–620.
Article CAS PubMed Google Scholar