The recurrent impact of the Sagittarius dwarf on the star formation history of the Milky Way (original) (raw)

References

  1. Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
    Google Scholar
  2. Gallart, C., Zoccali, M. & Aparicio, A. The adequacy of stellar evolution models for the interpretation of the color-magnitude diagrams of resolved stellar populations. Annu. Rev. Astron. Astrophys. 43, 387–434 (2005).
    ADS Google Scholar
  3. Mor, R., Robin, A. C., Figueras, F., Roca-Fàbrega, S. & Luri, X. Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago. Astron. Astrophys. 624, L1 (2019).
    ADS Google Scholar
  4. Heavens, A., Panter, B., Jimenez, R. & Dunlop, J. The star-formation history of the Universe from the stellar populations of nearby galaxies. Nature 428, 625–627 (2004).
    ADS Google Scholar
  5. Perryman, M. A. C. et al. The HIPPARCOS Catalogue. Astron. Astrophys. 323, L49–L52 (1997).
    ADS Google Scholar
  6. Bertelli, G. & Nasi, E. Star formation history in the solar vicinity. Astron. J. 121, 1013–1023 (2001).
    ADS Google Scholar
  7. Vergely, J.-L., Köppen, J., Egret, D. & Bienaymé, O. An inverse method to interpret colour-magnitude diagrams. Astron. Astrophys. 390, 917–929 (2002).
    ADS Google Scholar
  8. Cignoni, M., Degl’Innocenti, S., Prada Moroni, P. G. & Shore, S. N. Recovering the star formation rate in the solar neighborhood. Astron. Astrophys. 459, 783–796 (2006).
    ADS Google Scholar
  9. Haywood, M. et al. Phylogeny of the Milky Way’s inner disk and bulge populations: implications for gas accretion, (the lack of) inside-out thick disk formation, and quenching. Astron. Astrophys. 618, A78 (2018).
    Google Scholar
  10. Bernard, E. J. in IAU Symposium 334: Rediscovering Our Galaxy (eds Chiappini, C. et al.) 158–161 (IAU, 2018).
  11. Feltzing, S., Holmberg, J. & Hurley, J. R. The solar neighbourhood age-metallicity relation—does it exist? Astron. Astrophys. 377, 911–924 (2001).
    ADS Google Scholar
  12. Bergemann, M. et al. The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk. Astron. Astrophys. 565, A89 (2014).
    Google Scholar
  13. Hayden, M. R. et al. Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way Disk. Astrophys. J. 808, 132 (2015).
    ADS Google Scholar
  14. Gaia Collaboration et al. Gaia Data Release 2: mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).
    Google Scholar
  15. Gaia Collaboration et al. Gaia Data Release 2: observational Hertzsprung–Russell diagrams. Astron. Astrophys. 616, A10 (2018).
    Google Scholar
  16. Kennicutt, R. C. Jr., Keel, W. C., van der Hulst, J. M., Hummel, E. & Roettiger, K. A. The effects of interactions on spiral galaxies. II: disk star-formation rates. Astron. J. 93, 1011–1023 (1987).
    ADS Google Scholar
  17. Tissera, P. B., Domíguez-Tenreiro, R., Scannapieco, C. & Sáiz, A. Double starbursts triggered by mergers in hierarchical clustering scenarios. Mon. Not. R. Astron. Soc. 333, 327–338 (2002).
    ADS Google Scholar
  18. Ellison, S. L., Mendel, J. T., Patton, D. R. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey–VIII. The observational properties of post-merger galaxies. Mon. Not. R. Astron. Soc. 435, 3627–3638 (2013).
    ADS Google Scholar
  19. Tinsley, B. M. & Larson, R. B. Stellar population explosions in proto-elliptical galaxies. Mon. Not. R. Astron. Soc. 186, 503–517 (1979).
    ADS Google Scholar
  20. Freeman, K. & Bland-Hawthorn, J. The new galaxy: signatures of its formation. Annu. Rev. Astron. Astrophys. 40, 487–537 (2002).
    ADS Google Scholar
  21. Meza, A., Navarro, J. F., Abadi, M. G. & Steinmetz, M. Accretion relics in the solar neighbourhood: debris from ω Cen’s parent galaxy. Mon. Not. R. Astron. Soc. 359, 93–103 (2005).
    ADS Google Scholar
  22. Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron 3, 932–939 (2019).
    ADS Google Scholar
  23. Naab, T. & Ostriker, J. P. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017).
    ADS Google Scholar
  24. Ibata, R. A., Gilmore, G. & Irwin, M. J. A dwarf satellite galaxy in Sagittarius. Nature 370, 194–196 (1994).
    ADS Google Scholar
  25. Belokurov, V. et al. The field of streams: Sagittarius and its siblings. Astrophys. J. 642, L137–L140 (2006).
    ADS Google Scholar
  26. Law, D. R. & Majewski, S. R. The Sagittarius dwarf galaxy: a model for evolution in a triaxial Milky Way halo. Astrophys. J. 714, 229–254 (2010).
    ADS Google Scholar
  27. Purcell, C. W., Bullock, J. S., Tollerud, E. J., Rocha, M. & Chakrabarti, S. The Sagittarius impact as an architect of spirality and outer rings in the Milky Way. Nature 477, 301–303 (2011).
    ADS Google Scholar
  28. Laporte, C. F. P., Johnston, K. V., Gómez, F. A., Garavito-Camargo, N. & Besla, G. The influence of Sagittarius and the Large Magellanic Cloud on the stellar disc of the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 481, 286–306 (2018).
    ADS Google Scholar
  29. Eggen, O. J. The motions of the A Stars at the North Galactic Pole. Publ. Astron. Soc. Pac. 81, 741 (1969).
    ADS Google Scholar
  30. Siebert, A. et al. Detection of a radial velocity gradient in the extended local disc with RAVE. Mon. Not. R. Astron. Soc. 412, 2026–2032 (2011).
    ADS Google Scholar
  31. Williams, M. E. K. et al. The wobbly galaxy: kinematics north and south with RAVE red-clump giants. Mon. Not. R. Astron. Soc. 436, 101–121 (2013).
    ADS Google Scholar
  32. Gómez, F. A. et al. Vertical density waves in the Milky Way disc induced by the Sagittarius dwarf galaxy. Mon. Not. R. Astron. Soc. 429, 159–164 (2013).
    ADS Google Scholar
  33. Antoja, T. et al. A dynamically young and perturbed Milky Way disk. Nature 561, 360–362 (2018).
    ADS Google Scholar
  34. Laporte, C. F. P., Minchev, I., Johnston, K. V. & Gómez, F. A. Footprints of the Sagittarius dwarf galaxy in the Gaia data set. Mon. Not. R. Astron. Soc. 485, 3134–3152 (2019).
    ADS Google Scholar
  35. de la Vega, A., Quillen, A. C., Carlin, J. L., Chakrabarti, S. & D’Onghia, E. Phase wrapping of epicyclic perturbations in the Wobbly Galaxy. Mon. Not. R. Astron. Soc. 454, 933–945 (2015).
    ADS Google Scholar
  36. Mackereth, J. T. et al. The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon. Not. R. Astron. Soc. 482, 3426–3442 (2019).
    ADS Google Scholar
  37. de Boer, T. J. L., Belokurov, V. & Koposov, S. The star formation history of the Sagittarius stream. Mon. Not. R. Astron. Soc. 451, 3489–3503 (2015).
    ADS Google Scholar
  38. Siegel, M. H. et al. The ACS survey of galactic globular clusters: M54 and Young populations in the sagittarius dwarf spheroidal galaxy. Astrophys. J. 667, L57–L60 (2007).
    ADS Google Scholar
  39. Besla, G. et al. Are the Magellanic Clouds on their first passage about the Milky Way? Astrophys. J. 668, 949–967 (2007).
    ADS Google Scholar
  40. Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V. & Garavito-Camargo, N. Response of the Milky Way’s disc to the Large Magellanic Cloud in a first infall scenario. Mon. Not. R. Astron. Soc. 473, 1218–1230 (2018).
    ADS Google Scholar
  41. Laporte, C. F. P., Belokurov, V., Koposov, S. E., Smith, M. C. & Hill, V. Chemo-dynamical properties of the Anticenter Stream: a surviving disc fossil from a past satellite interaction. Mon. Not. R. Astron. Soc. 492, L61–L65 (2020).
    ADS Google Scholar
  42. McConnachie, A. W. et al. The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009).
    ADS Google Scholar
  43. Bernard, E. J. et al. The star formation history and dust content in the far outer disc of M31. Mon. Not. R. Astron. Soc. 420, 2625–2643 (2012).
    ADS Google Scholar
  44. Mihos, J. C. & Hernquist, L. Triggering of starbursts in galaxies by minor mergers. Astrophys. J. 425, L13–L16 (1994).
    ADS Google Scholar
  45. Hernquist, L. & Mihos, J. C. Excitation of activity in galaxies by minor mergers. Astrophys. J. 448, 41 (1995).
    ADS Google Scholar
  46. Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R. & Dekel, A. The effect of galaxy mass ratio on merger-driven starbursts. Mon. Not. R. Astron. Soc. 384, 386–409 (2008).
    ADS Google Scholar
  47. Moreno, J. et al. Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation. Mon. Not. R. Astron. Soc. 448, 1107–1117 (2015).
    ADS Google Scholar
  48. Teyssier, R., Chapon, D. & Bournaud, F. The driving mechanism of starbursts in galaxy mergers. Astrophys. J. 720, L149–L154 (2010).
    ADS Google Scholar
  49. Chien, L.-H. & Barnes, J. E. Dynamically driven star formation in models of NGC 7252. Mon. Not. R. Astron. Soc. 407, 43–54 (2010).
    ADS Google Scholar
  50. Moster, B. P., Macciò, A. V., Somerville, R. S., Naab, T. & Cox, T. J. The effects of a hot gaseous halo in galaxy major mergers. Mon. Not. R. Astron. Soc. 415, 3750–3770 (2011).
    ADS Google Scholar
  51. Luri, X. et al. Gaia Data Release 2: using Gaia parallaxes. Astron. Astrophys. 616, A9 (2018).
    Google Scholar
  52. Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).
    Google Scholar
  53. Stassun, K. G. & Torres, G. Evidence for a systematic offset of -80 μas in the Gaia DR2 Parallaxes. Astrophys. J. 862, 61 (2018).
    ADS Google Scholar
  54. Riess, A. G. et al. Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant. Astrophys. J. 861, 126 (2018).
    ADS Google Scholar
  55. Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the Gaia DR2 parallax zero-point offset using asteroseismology and spectroscopy in the Kepler field. Astrophys. J. 878, 136 (2019).
    ADS Google Scholar
  56. Schönrich, R., McMillan, P. & Eyer, L. Distances and parallax bias in Gaia DR2. Mon. Not. R. Astron. Soc. 487, 3568–3580 (2019).
    ADS Google Scholar
  57. Khan, S. et al. New light on the Gaia DR2 parallax zero-point: influence of the asteroseismic approach, in and beyond the Kepler field. Astron. Astrophys. 628, A35 (2019).
    Google Scholar
  58. Graczyk, D. et al. Testing systematics of Gaia DR2 parallaxes with empirical surface brightness: color relations applied to eclipsing binaries. Astrophys. J. 872, 85 (2019).
    ADS Google Scholar
  59. Hall, O. J. et al. Testing asteroseismology with Gaia DR2: hierarchical models of the red clump. Mon. Not. R. Astron. Soc. 486, 3569–3585 (2019).
    ADS Google Scholar
  60. Leung, H. W. & Bovy, J. Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning. Mon. Not. R. Astron. Soc. 489, 2079–2096 (2019).
    ADS Google Scholar
  61. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV: distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).
    ADS Google Scholar
  62. Anders, F. et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18. Astron. Astrophys. 628, A94 (2019).
    Google Scholar
  63. Lallement, R. et al. Three-dimensional maps of interstellar dust in the Local Arm: using Gaia, 2MASS, and APOGEE-DR14. Astron. Astrophys. 616, A132 (2018).
    Google Scholar
  64. Casagrande, L. & VandenBerg, D. A. On the use of Gaia magnitudes and new tables of bolometric corrections. Mon. Not. R. Astron. Soc. 479, L102–L107 (2018).
    ADS Google Scholar
  65. Cignoni, M. & Tosi, M. Star formation histories of dwarf galaxies from the colour-magnitude diagrams of their resolved stellar populations. Adv. Astron. 2010, 158568 (2010).
    ADS Google Scholar
  66. Aparicio, A. & Hidalgo, S. L. IAC-pop: finding the star formation history of resolved galaxies. Astron. J. 138, 558–567 (2009).
    ADS Google Scholar
  67. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).
    ADS Google Scholar
  68. Monelli, M. et al. The ACS LCID Project. III. The star formation history of the Cetus dSph galaxy: a post-reionization fossil. Astrophys. J. 720, 1225–1245 (2010).
    ADS Google Scholar
  69. Pietrinferni, A., Cassisi, S., Salaris, M. & Castelli, F. A large stellar evolution database for population synthesis studies. I: scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004).
    ADS Google Scholar
  70. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
    ADS Google Scholar
  71. Evans, D. W. et al. Gaia Data Release 2: photometric content and validation. Astron. Astrophys. 616, A4 (2018).
    Google Scholar
  72. Bernard, E. J. et al. The spatially-resolved star formation history of the M31 outer disc. Mon. Not. R. Astron. Soc. 453, L113–L117 (2015).
    ADS Google Scholar
  73. Bernard, E. J. et al. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows. Mon. Not. R. Astron. Soc. 477, 3507–3519 (2018).
    ADS Google Scholar
  74. Ruiz-Lara, T. et al. Integrated-light analyses vs. colour-magnitude diagrams. II. Leo A: an extremely young dwarf in the Local Group. Astron. Astrophys. 617, A18 (2018).
    Google Scholar
  75. Hidalgo, S. L. et al. The ACS LCID Project. V. The star formation history of the dwarf galaxy LGS-3: clues to cosmic reionization and feedback. Astrophys. J. 730, 14 (2011).
    ADS Google Scholar
  76. Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).
    ADS Google Scholar
  77. Hidalgo, S. L. et al. The updated BaSTI stellar evolution models and isochrones. I. Solar-scaled calculations. Astrophys. J. 856, 125 (2018).
    ADS Google Scholar
  78. Rusakov, V. et al. The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST. Preprint at https://arxiv.org/abs/2002.09714 (2020).
  79. Hunter, J. D. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    Google Scholar
  80. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
    Google Scholar
  81. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
    ADS Google Scholar

Download references