Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens (original) (raw)
Surveillance Research Program, N.C.I. Fast Stats: An Interactive Tool for Access to SEER Cancer Statistics (2016); https://seer.cancer.gov/faststats/
Barakat, F. H., Sulaiman, I. & Sughayer, M. A. Reliability of frozen section in breast sentinel lymph node examination. Breast Cancer21, 576– 582 (2014). Article Google Scholar
McKenney, J. K. et al. The potential impact of reproducibility of Gleason grading in men with early stage prostate cancer managed by active surveillance: a multi-institutional study. J. Urol.186, 465–469 (2011). Article Google Scholar
Shah, R. B. et al. Diagnosis of Gleason pattern 5 prostate adenocarcinoma on core needle biopsy: an interobserver reproducibility study among urologic pathologists. Am. J. Surg. Pathol.39, 1242–1249 (2015). Article Google Scholar
Meyer, J. S. et al. Breast carcinoma malignancy grading by Bloom-Richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index. Mod. Pathol.18, 1067–1078 (2005). Article Google Scholar
Tozbikian, G . et al. Atypical ductal hyperplasia bordering on ductal carcinoma in situ: interobserver variability and outcomes in 105 cases. Int. J. Surg. Pathol.25, 100–107 (2016). Article Google Scholar
Bedossa, P., Dargere, D. & Paradis, V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology38, 1449–1457 (2003). Article Google Scholar
Roberts, N. et al. Toward routine use of 3D histopathology as a research tool. Am. J. Pathol.180, 1835–1842 (2012). Article Google Scholar
Carlson, R. O., Amirahmadi, F. & Hernandez, J. S. A primer on the cost of quality for improvement of laboratory and pathology specimen processes. Am. J. Clin. Pathol.138, 347–354 (2012). Article Google Scholar
Gareau, D. S. et al. Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology. J. Biomed. Opt.13, 054001 (2008). Article Google Scholar
Van Royen, M. E. et al. Three-dimensional microscopic analysis of clinical prostate specimens. Histopathology69, 985–992 (2016). Article Google Scholar
Fereidouni, F . et al. Microscopy with UV Surface Excitation (MUSE) for slide-free histology and pathology imaging. Proc. SPIE9318, 93180F (2015). Article Google Scholar
Wang, M. et al. High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy. Cancer Res.75, 4032–4041 (2015). Article Google Scholar
Wang, M. et al. Gigapixel surface imaging of radical prostatectomy specimens for comprehensive detection of cancer-positive surgical margins using structured illumination microscopy. Sci. Rep. 6, 27419 (2016 ). Article Google Scholar
Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl Acad. Sci. USA111, 15304–15309 (2014). Article Google Scholar
Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng.1, 0027 (2017). Article Google Scholar
Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon.10, 534–540 (2016). Article Google Scholar
Olson, E., Levene, M. J. & Torres, R. Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies. Biomed. Opt. Express7, 3089–3096 (2016). Article Google Scholar
Jonkman, J. & Brown, C. M. Any way you slice it—a comparison of confocal microscopy techniques. J. Biomol. Tech.26, 54–65 (2015). Google Scholar
Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nat. Methods8, 811–819 (2011). Article Google Scholar
Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med.15, 1219–1223 (2009). Article Google Scholar
Assayag, O. et al. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technol. Cancer Res. Treat.13, 455–468 (2014). Google Scholar
Zysk, A. M. et al. Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt.12, 051403 (2007). Article Google Scholar
Siedentopf, H. & Zsigmondy, R. Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Annal. Phys.315, 1–39 (1902). Article Google Scholar
Dodt, H. U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods4, 331–336 (2007). Article Google Scholar
Keller, P. J. et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science322, 1065–1069 (2008). Article Google Scholar
Cella Zanacchi, F. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods8, 1047–1049 (2011). Article Google Scholar
Huisken, J. et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science305, 1007–1009 (2004). Article Google Scholar
Glaser, A. K., Wang, Y. & Liu, J. T. Assessing the imaging performance of light sheet microscopies in highly scattering tissues. Biomed. Opt. Express7, 454–466 (2016). Article Google Scholar
Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods10, 598–599 (2013). Article Google Scholar
Reynaud, E. G. et al. Guide to light-sheet microscopy for adventurous biologists. Nat. Methods12, 30–34 (2015). Article Google Scholar
Kumar, A. et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nat. Protoc.9, 2555–2573 (2014). Article Google Scholar
Strnad, P. et al. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods13, 139–142 (2016). Article Google Scholar
Yang, Z. et al. An inverted light sheet microscope optimized for studies in neuroscience_. Conf. CLEO_ Atu3O.5 (2016).
Wu, Y. et al. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA108, 17708–17713 (2011). Article Google Scholar
Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods14, 360–373 (2017). Article Google Scholar
McGorty, R. et al. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express23, 16142–16153 (2015). Article Google Scholar
Kino, G. S. Applications and theory of the solid immersion lens. Proc. SPIE3609, 56 (1999). Google Scholar
Liu, J. T. et al. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture. J. Biomed. Opt. 13, 034020 (2008). Article Google Scholar
Hall, G. S., Kramer, C. E. & Epstein, J. I. Evaluation of radical prostatectomy specimens. A comparative analysis of sampling methods. Am. J. Surg. Pathol.16, 315–324 (1992). Article Google Scholar
Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature497, 332–337 (2013). Article Google Scholar
Elfer, K. N. et al. DRAQ5 and eosin ('D&E') as an analog to hematoxylin and eosin for rapid fluorescence histology of fresh tissues. PLoS ONE11, e0165530 (2016). Article Google Scholar
Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA113, 14456–14461 (2016). Article Google Scholar
Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods13, 679–684 (2016). Article Google Scholar
Schmid, H. P. & McNeal, J. E. An abbreviated standard procedure for accurate tumor volume estimation in prostate cancer. Am. J. Surg. Pathol.16, 184–191 (1992). Article Google Scholar
Sehdev, A. E., Pan, C. C. & Epstein, J. I. Comparative analysis of sampling methods for grossing radical prostatectomy specimens performed for nonpalpable (stage T1c) prostatic adenocarcinoma. Hum. Pathol.32, 494–499 (2001). Article Google Scholar
Jacobs, L. Positive margins: the challenge continues for breast surgeons. Ann. Surg. Oncol.15, 1271–1272 (2008). Article Google Scholar
Moran, M. S. et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J. Clin. Oncol.32, 1507–1515 (2014). Article Google Scholar
Adams, B. J. et al. The role of margin status and reexcision in local recurrence following breast conservation surgery. Ann. Surg. Oncol.20, 2250–2255 (2013). Article Google Scholar
Singletary, S. E. et al. Revision of the American Joint Committee on Cancer staging system for breast cancer. J. Clin. Oncol.20, 3628–3636 (2002). Article Google Scholar
Zhou, M. et al. Diagnosis of "poorly formed glands" Gleason pattern 4 prostatic adenocarcinoma on needle biopsy: an interobserver reproducibility study among urologic pathologists with recommendations. Am. J. Surg. Pathol.39, 1331–1339 (2015). Article Google Scholar
Vettenburg, T. et al. Light-sheet microscopy using an Airy beam. Nat. Methods11, 541–544 (2014). Article Google Scholar
Fahrbach, F. O. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun.3, 632 (2012). Article Google Scholar
Fu, Q. et al. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun.7, 11088 (2016). Article Google Scholar
De Medeiros, G. et al. Confocal multiview light-sheet microscopy. Nat. Commun.6, 8881 (2015). Article Google Scholar
Tomer, R. et al. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods9, 755–763 (2012). Article Google Scholar
Dean, K. M. et al. Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy. Optica4, 263–271 (2017). Article Google Scholar
Munch, B. et al. Stripe and ring artifact removal with combined wavelet—Fourier filtering. Opt. Express17, 8567–8591 (2009). Article Google Scholar
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics25, 1463–1465 (2009). Article Google Scholar
Aguet, F., Van De Ville, D. & Unser, M. Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process.17, 1144–1153 (2008). Article Google Scholar
Giacomelli, M. G. et al. Virtual hematoxylin and eosin transillumination microscopy using epi-fluorescence imaging. PLoS ONE11, e0159337 (2016). Article Google Scholar