Social transmission of avoidance among predators facilitates the spread of novel prey (original) (raw)
References
Poulton, E. B. The Colours of Animals: Their Meaning and Use Especially Considered in the Case of Insects (Kegan Paul, Trench, Trübner & Co., London, 1890).
Puurtinen, M. & Kaitala, V. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights. Evolution60, 2246–2256 (2006). ArticlePubMed Google Scholar
Ruxton, G. D. & Sherratt, T. N. Aggregation, defence and warning signals: the evolutionary relationship. Proc. R. Soc. B Biol. Sci.273, 2417–2424 (2006). Article Google Scholar
Skelhorn, J., Halpin, C. G. & Rowe, C. Learning about aposematic prey. Behav. Ecol.27, 955–964 (2016). Article Google Scholar
Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change? Nature397, 249–251 (1999). Article Google Scholar
Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature286, 149–150 (1980). Article Google Scholar
Exnerová, A. et al. Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behav. Ecol.18, 148–156 (2007). Article Google Scholar
Mappes, J., Kokko, H., Ojala, K. & Lindström, L. Seasonal changes in predator community switch the direction of selection for prey defences. Nat. Commun.5, 5016 (2014). ArticleCASPubMedPubMed Central Google Scholar
Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: predicting the optimal level of chemical defences. Funct. Ecol.20, 731–735 (2006). Article Google Scholar
Stevens, M. & Ruxton, G. D. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B Biol. Sci.279, 417–426 (2012). Article Google Scholar
Marples, N. M., Kelly, D. J. & Thomas, R. J. Perspective: the evolution of warning coloration is not paradoxical. Evolution59, 933–940 (2005). ArticlePubMed Google Scholar
Riipi, M., Alatalo, R. V. & Lindström, L. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature413, 512–514 (2001). ArticleCASPubMed Google Scholar
Marples, N. M. & Mappes, J. Can the dietary conservatism of predators compensate for positive frequency dependent selection against rare, conspicuous prey? Evol. Ecol.25, 737–749 (2011). Article Google Scholar
McMahon, K. & Marples, N. Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. J. Avian Biol.48, 448–454 (2017). Article Google Scholar
Lindström, L., Alatalo, R. V. & Mappes, J. Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav. Ecol.10, 317–322 (1999). Article Google Scholar
Endler, J. A. & Mappes, J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat.163, 532–547 (2004). ArticlePubMed Google Scholar
Dall, S. R. X., Giraldeau, L.-A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol.20, 187–193 (2005). ArticlePubMed Google Scholar
Lynn, S. K. Learning to avoid aposematic prey. Anim. Behav.70, 1221–1226 (2005). Article Google Scholar
Swynnerton, C. F. M. Birds in relation to their prey: experiments on wood hoopoes, small hornbills and a babbler. J. S. Afr. Ornithol. Union11, 32–108 (1915). Google Scholar
van de Waal, E., Borgeaud, C. & Whiten, A. Potent social learning and conformity shape a wild primate’s foraging decisions. Science340, 483–485 (2013). ArticleCASPubMed Google Scholar
Landová, E., Hotová Svádová, K., Fuchs, R., Štys, P. & Exnerová, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn.20, 855–866 (2017). PubMed Google Scholar
Snowdon, C. T. & Boe, C. Y. Social communication about unpalatable foods in tamarins (Saguinus oedipus). J. Comp. Psychol.117, 142–148 (2003). ArticlePubMed Google Scholar
Mason, J. R. & Reidinger, R. Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). Auk99, 548–554 (1982). Google Scholar
Fryday, S. & Greig-Smith, P. The effects of social learning on the food choice of the house sparrow (Passer domesticus). Behaviour128, 281–300 (1994). Article Google Scholar
Johnston, A. N. B., Burne, T. H. J. & Rose, S. P. R. Observation learning in day-old chicks using a one-trial passive avoidance learning paradigm. Anim. Behav.56, 1347–1353 (1998). ArticleCASPubMed Google Scholar
Skelhorn, J. Colour biases are a question of conspecifics’ taste. Anim. Behav.81, 825–829 (2011). Article Google Scholar
Harvey, P. H., Bull, J. J., Pemberton, M. & Paxton, R. J. The evolution of aposematic coloration in distasteful prey: a family model. Am. Nat.119, 710–719 (1982). Article Google Scholar
Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature382, 708–710 (1996). ArticleCAS Google Scholar
Lindström, L., Lyytinen, A., Mappes, J. & Ojala, K. Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Anim. Behav.72, 323–333 (2006). Article Google Scholar
Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia67, 411–415 (1985). ArticlePubMed Google Scholar
Marchetti, C. & Drent, P. J. Individual differences in the use of social information in foraging by captive great tits. Anim. Behav.60, 131–140 (2000). ArticleCASPubMed Google Scholar
Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature518, 538–541 (2015). ArticleCASPubMed Google Scholar
Hämäläinen, L., Rowland, H. M., Mappes, J. & Thorogood, R. Can video playback provide social information for foraging blue tits? PeerJ5, e3062 (2017). ArticlePubMedPubMed Central Google Scholar
Saitou, T. Ecological study of social organization in the great tit, Parus major L. III. Home range of the basic flocks and dominance relationship of the members in a basic flock. J. Yamashina Inst. Ornithol.11, 149–171 (1979). Article Google Scholar
Lee, T. J. & Speed, M. P. The effect of metapopulation dynamics on the survival and spread of a novel, conspicuous prey. J. Theor. Biol.267, 319–29 (2010). ArticlePubMed Google Scholar
Grüter, C. & Leadbeater, E. Insights from insects about adaptive social information use. Trends Ecol. Evol.29, 177–184 (2014). ArticlePubMed Google Scholar
White, S. L. & Gowan, C. Social learning enhances search image acquisition in foraging brook trout. Environ. Biol. Fishes97, 523–528 (2014). Article Google Scholar
Kis, A., Huber, L. & Wilkinson, A. Social learning by imitation in a reptile (Pogona vitticeps). Anim. Cogn.18, 325–331 (2015). ArticlePubMed Google Scholar
Galef, B. G. & Giraldeau, L.-A. Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim. Behav.61, 3–15 (2001). ArticlePubMed Google Scholar
Heyes, C. M. Social learning in animals: categories and mechanisms. Biol. Rev.69, 207–231 (1994). ArticleCASPubMed Google Scholar
Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol.60, 550–555 (2006). Article Google Scholar
Sasvári, L. & Hegyi, Z. How mixed-species foraging flocks develop in response to benefits from observational learning. Anim. Behav.55, 1461–1469 (1998). ArticlePubMed Google Scholar
Farine, D. R., Garroway, C. J. & Sheldon, B. C. Social network analysis of mixed-species flocks: exploring the structure and evolution of interspecific social behaviour. Anim. Behav.84, 1271–1277 (2012). Article Google Scholar
Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in arctiid moths. J. Anim. Ecol.83, 598–605 (2014). ArticlePubMed Google Scholar
Farine, D. R., Montiglio, P. & Spiegel, O. From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol. Evol.30, 609–621 (2015). ArticlePubMedPubMed Central Google Scholar
Beckmann, C., Crossland, M. R. & Shine, R. Responses of Australian wading birds to a novel toxic prey type, the invasive cane toad Rhinella marina. Biol. Invasions13, 2925–2934 (2011). Article Google Scholar
Cremona, T., Spencer, P., Shine, R. & Webb, J. K. Avoiding the last supper: parentage analysis indicates multi-generational survival of re-introduced ‘toad-smart’ lineage. Conserv. Genet.18, 1475–1480 (2017). Article Google Scholar
Thorogood, R. & Davies, N. B. Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science337, 578–580 (2012). ArticleCASPubMed Google Scholar
Pruitt, J. N. et al. Behavioral hypervolumes of predator groups and predator–predator interactions shape prey survival rates and selection on prey behavior. Am. Nat.189, 254–266 (2017). ArticlePubMedPubMed Central Google Scholar
Orell, M. Population fluctuations and survival of great tits Parus major dependent on food supplied by man in winter. Ibis131, 112–127 (1989). Article Google Scholar
Snijders, L., Naguib, M. & van Oers, K. Dominance rank and boldness predict social attraction in great tits. Behav. Ecol.28, 398–406 (2017). Google Scholar
Guillette, L. M. & Healy, S. D. The roles of vocal and visual interactions in social learning zebra finches: a video playback experiment. Behav. Process.139, 43–49 (2017). Article Google Scholar
R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015). Article Google Scholar