Social transmission of avoidance among predators facilitates the spread of novel prey (original) (raw)

References

  1. Poulton, E. B. The Colours of Animals: Their Meaning and Use Especially Considered in the Case of Insects (Kegan Paul, Trench, Trübner & Co., London, 1890).
  2. Puurtinen, M. & Kaitala, V. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights. Evolution 60, 2246–2256 (2006).
    Article PubMed Google Scholar
  3. Ruxton, G. D. & Sherratt, T. N. Aggregation, defence and warning signals: the evolutionary relationship. Proc. R. Soc. B Biol. Sci. 273, 2417–2424 (2006).
    Article Google Scholar
  4. Skelhorn, J., Halpin, C. G. & Rowe, C. Learning about aposematic prey. Behav. Ecol. 27, 955–964 (2016).
    Article Google Scholar
  5. Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change? Nature 397, 249–251 (1999).
    Article Google Scholar
  6. Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature 286, 149–150 (1980).
    Article Google Scholar
  7. Exnerová, A. et al. Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behav. Ecol. 18, 148–156 (2007).
    Article Google Scholar
  8. Mappes, J., Kokko, H., Ojala, K. & Lindström, L. Seasonal changes in predator community switch the direction of selection for prey defences. Nat. Commun. 5, 5016 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  9. Longson, C. G. & Joss, J. M. P. Optimal toxicity in animals: predicting the optimal level of chemical defences. Funct. Ecol. 20, 731–735 (2006).
    Article Google Scholar
  10. Stevens, M. & Ruxton, G. D. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B Biol. Sci. 279, 417–426 (2012).
    Article Google Scholar
  11. Marples, N. M., Kelly, D. J. & Thomas, R. J. Perspective: the evolution of warning coloration is not paradoxical. Evolution 59, 933–940 (2005).
    Article PubMed Google Scholar
  12. Riipi, M., Alatalo, R. V. & Lindström, L. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413, 512–514 (2001).
    Article CAS PubMed Google Scholar
  13. Marples, N. M. & Mappes, J. Can the dietary conservatism of predators compensate for positive frequency dependent selection against rare, conspicuous prey? Evol. Ecol. 25, 737–749 (2011).
    Article Google Scholar
  14. McMahon, K. & Marples, N. Reduced dietary conservatism in a wild bird in the presence of intraspecific competition. J. Avian Biol. 48, 448–454 (2017).
    Article Google Scholar
  15. Lindström, L., Alatalo, R. V. & Mappes, J. Reactions of hand-reared and wild-caught predators toward warningly colored, gregarious, and conspicuous prey. Behav. Ecol. 10, 317–322 (1999).
    Article Google Scholar
  16. Endler, J. A. & Mappes, J. Predator mixes and the conspicuousness of aposematic signals. Am. Nat. 163, 532–547 (2004).
    Article PubMed Google Scholar
  17. Dall, S. R. X., Giraldeau, L.-A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193 (2005).
    Article PubMed Google Scholar
  18. Lynn, S. K. Learning to avoid aposematic prey. Anim. Behav. 70, 1221–1226 (2005).
    Article Google Scholar
  19. Swynnerton, C. F. M. Birds in relation to their prey: experiments on wood hoopoes, small hornbills and a babbler. J. S. Afr. Ornithol. Union 11, 32–108 (1915).
    Google Scholar
  20. van de Waal, E., Borgeaud, C. & Whiten, A. Potent social learning and conformity shape a wild primate’s foraging decisions. Science 340, 483–485 (2013).
    Article CAS PubMed Google Scholar
  21. Landová, E., Hotová Svádová, K., Fuchs, R., Štys, P. & Exnerová, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn. 20, 855–866 (2017).
    PubMed Google Scholar
  22. Snowdon, C. T. & Boe, C. Y. Social communication about unpalatable foods in tamarins (Saguinus oedipus). J. Comp. Psychol. 117, 142–148 (2003).
    Article PubMed Google Scholar
  23. Mason, J. R. & Reidinger, R. Observational learning of food aversions in red-winged blackbirds (Agelaius phoeniceus). Auk 99, 548–554 (1982).
    Google Scholar
  24. Fryday, S. & Greig-Smith, P. The effects of social learning on the food choice of the house sparrow (Passer domesticus). Behaviour 128, 281–300 (1994).
    Article Google Scholar
  25. Johnston, A. N. B., Burne, T. H. J. & Rose, S. P. R. Observation learning in day-old chicks using a one-trial passive avoidance learning paradigm. Anim. Behav. 56, 1347–1353 (1998).
    Article CAS PubMed Google Scholar
  26. Skelhorn, J. Colour biases are a question of conspecifics’ taste. Anim. Behav. 81, 825–829 (2011).
    Article Google Scholar
  27. Harvey, P. H., Bull, J. J., Pemberton, M. & Paxton, R. J. The evolution of aposematic coloration in distasteful prey: a family model. Am. Nat. 119, 710–719 (1982).
    Article Google Scholar
  28. Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).
    Article CAS Google Scholar
  29. Lindström, L., Lyytinen, A., Mappes, J. & Ojala, K. Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Anim. Behav. 72, 323–333 (2006).
    Article Google Scholar
  30. Sillén-Tullberg, B. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia 67, 411–415 (1985).
    Article PubMed Google Scholar
  31. Marchetti, C. & Drent, P. J. Individual differences in the use of social information in foraging by captive great tits. Anim. Behav. 60, 131–140 (2000).
    Article CAS PubMed Google Scholar
  32. Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).
    Article CAS PubMed Google Scholar
  33. Hämäläinen, L., Rowland, H. M., Mappes, J. & Thorogood, R. Can video playback provide social information for foraging blue tits? PeerJ 5, e3062 (2017).
    Article PubMed PubMed Central Google Scholar
  34. Saitou, T. Ecological study of social organization in the great tit, Parus major L. III. Home range of the basic flocks and dominance relationship of the members in a basic flock. J. Yamashina Inst. Ornithol. 11, 149–171 (1979).
    Article Google Scholar
  35. Lee, T. J. & Speed, M. P. The effect of metapopulation dynamics on the survival and spread of a novel, conspicuous prey. J. Theor. Biol. 267, 319–29 (2010).
    Article PubMed Google Scholar
  36. Grüter, C. & Leadbeater, E. Insights from insects about adaptive social information use. Trends Ecol. Evol. 29, 177–184 (2014).
    Article PubMed Google Scholar
  37. White, S. L. & Gowan, C. Social learning enhances search image acquisition in foraging brook trout. Environ. Biol. Fishes 97, 523–528 (2014).
    Article Google Scholar
  38. Kis, A., Huber, L. & Wilkinson, A. Social learning by imitation in a reptile (Pogona vitticeps). Anim. Cogn. 18, 325–331 (2015).
    Article PubMed Google Scholar
  39. Galef, B. G. & Giraldeau, L.-A. Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim. Behav. 61, 3–15 (2001).
    Article PubMed Google Scholar
  40. Heyes, C. M. Social learning in animals: categories and mechanisms. Biol. Rev. 69, 207–231 (1994).
    Article CAS PubMed Google Scholar
  41. Skelhorn, J. & Rowe, C. Taste-rejection by predators and the evolution of unpalatability in prey. Behav. Ecol. Sociobiol. 60, 550–555 (2006).
    Article Google Scholar
  42. Olsson, A. & Phelps, E. A. Social learning of fear. Nat. Neurosci. 10, 1095–1102 (2007).
    Article CAS PubMed Google Scholar
  43. Sasvári, L. & Hegyi, Z. How mixed-species foraging flocks develop in response to benefits from observational learning. Anim. Behav. 55, 1461–1469 (1998).
    Article PubMed Google Scholar
  44. Farine, D. R., Garroway, C. J. & Sheldon, B. C. Social network analysis of mixed-species flocks: exploring the structure and evolution of interspecific social behaviour. Anim. Behav. 84, 1271–1277 (2012).
    Article Google Scholar
  45. Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in arctiid moths. J. Anim. Ecol. 83, 598–605 (2014).
    Article PubMed Google Scholar
  46. Farine, D. R., Montiglio, P. & Spiegel, O. From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol. Evol. 30, 609–621 (2015).
    Article PubMed PubMed Central Google Scholar
  47. Beckmann, C., Crossland, M. R. & Shine, R. Responses of Australian wading birds to a novel toxic prey type, the invasive cane toad Rhinella marina. Biol. Invasions 13, 2925–2934 (2011).
    Article Google Scholar
  48. Cremona, T., Spencer, P., Shine, R. & Webb, J. K. Avoiding the last supper: parentage analysis indicates multi-generational survival of re-introduced ‘toad-smart’ lineage. Conserv. Genet. 18, 1475–1480 (2017).
    Article Google Scholar
  49. Thorogood, R. & Davies, N. B. Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science 337, 578–580 (2012).
    Article CAS PubMed Google Scholar
  50. Pruitt, J. N. et al. Behavioral hypervolumes of predator groups and predator–predator interactions shape prey survival rates and selection on prey behavior. Am. Nat. 189, 254–266 (2017).
    Article PubMed PubMed Central Google Scholar
  51. Orell, M. Population fluctuations and survival of great tits Parus major dependent on food supplied by man in winter. Ibis 131, 112–127 (1989).
    Article Google Scholar
  52. Snijders, L., Naguib, M. & van Oers, K. Dominance rank and boldness predict social attraction in great tits. Behav. Ecol. 28, 398–406 (2017).
    Google Scholar
  53. Guillette, L. M. & Healy, S. D. The roles of vocal and visual interactions in social learning zebra finches: a video playback experiment. Behav. Process. 139, 43–49 (2017).
    Article Google Scholar
  54. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
  55. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article Google Scholar

Download references