Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming (original) (raw)
References
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc.90, 1095–1107 (2009). Article Google Scholar
Grose, M. R., Gregory, J., Colman, R. & Andrews, T. What climate sensitivity index is most useful for projections? Geophys. Res. Lett.45, 1559–1566 (2018). Article Google Scholar
Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature491, 683–691 (2012). Article Google Scholar
Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A. & Rayner, N. A. An observationally based estimate of the climate sensitivity. J. Clim.15, 3117–3121 (2002). Article Google Scholar
Otto, A. et al. Energy budget constraints on climate response. Nat. Geosci.6, 415–416 (2013). Article Google Scholar
Lewis, N. & Curry, J. A. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dynam.45, 1009–1023 (2014). Article Google Scholar
Mauritsen, T. & Pincus, R. Committed warming inferred from observations. Nat. Clim. Change7, 652–655 (2017). Article Google Scholar
Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change6, 639–640 (2016). Article Google Scholar
Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim.23, 2333–2344 (2010). Article Google Scholar
Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim.23, 2418–2427 (2010). Article Google Scholar
Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci.9, 871–874 (2016). Article Google Scholar
Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change7, 331–335 (2017). Article Google Scholar
Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett.45, 8490–8499 (2018). Article Google Scholar
Kiehl, J. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett.34, L22710 (2007). Article Google Scholar
Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys.11, 1101–1116 (2011). Article Google Scholar
Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim.28, 4794–4819 (2015). Article Google Scholar
Fiedler, S., Stevens, B. & Mauritsen, T. On the sensitivity of anthropogenic aerosol forcing to model-internal variability and parameterizing a twomey effect. J. Adv. Model. Earth Syst.9, 1325–1341 (2017). Article Google Scholar
Gregory, J. M. & Forster, P. M. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos.113, D23105 (2008). Article Google Scholar
Bengtsson, L. & Schwartz, S. E. Determination of a lower bound on Earth’s climate sensitivity. Tellus B65, 21533 (2013). Article Google Scholar
Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos.118, 1139–1150 (2013). Article Google Scholar
Mauritsen, T. et al. Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst.11, 998–1038 (2018). Article Google Scholar
Gregory, J. M., Andrews, T. & Good, P. The inconstancy of the transient climate response parameter under increasing CO2. Phil. Trans. R. Soc. A373, 20140417 (2015). Article Google Scholar
Gregory, J. M., Andrews, T., Good, P., Mauritsen, T. & Forster, P. M. Small global-mean cooling due to volcanic radiative forcing. Clim. Dynam.47, 3979–3991 (2016). Article Google Scholar
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Shindell, D. T. et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys.13, 2939–2974 (2011). Article Google Scholar
Regayre, L. A. et al. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett.41, 9040–9049 (2014). Article Google Scholar
Zhao, M. et al. The gfdl global atmosphere and land model am4.0/lm4.0: 1. simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst.10, 691–734 (2018). Article Google Scholar
Hansen, J. et al. Climate response times: Dependence on climate sensitivity and ocean mixing. Science229, 857–859 (1985). Article Google Scholar
Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. part ii: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Clim.26, 1859–1876 (2013). Article Google Scholar
Morice, C. P., Kennedy, J. J. & Rayner, N. A. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos.117, D08101 (2012). Article Google Scholar
Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc.93, 1677–1685 (2012). Article Google Scholar
Hansen, J. E., Ruedy, R. A., Sato, M. & Lo, K.-W. K. Global surface temperature change. Rev. Geophys.48, RG4004 (2010). Article Google Scholar
Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat.1, 1 (2013). Google Scholar
Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc.140, 1935–1944 (2014). Article Google Scholar
Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett.39, L09712 (2012). Google Scholar
Jones, C. et al. (eds) in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Annex II (IPCC, Cambridge Univ. Press, 2013).
Boggs, P. T., Byrd, R. H. & Schnabel, R. B. A Stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput.8, 1052–1078 (1987). Article Google Scholar
Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature505, 37–42 (2014). Article Google Scholar
Brient, F. et al. Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Clim. Dynam.47, 433–449 (2016). Article Google Scholar
Stevens, B. et al. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geosci. Model Dev.10, 433–452 (2017). Article Google Scholar