Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming (original) (raw)

References

  1. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).
    Article Google Scholar
  2. Grose, M. R., Gregory, J., Colman, R. & Andrews, T. What climate sensitivity index is most useful for projections? Geophys. Res. Lett. 45, 1559–1566 (2018).
    Article Google Scholar
  3. Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).
    Article Google Scholar
  4. Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A. & Rayner, N. A. An observationally based estimate of the climate sensitivity. J. Clim. 15, 3117–3121 (2002).
    Article Google Scholar
  5. Otto, A. et al. Energy budget constraints on climate response. Nat. Geosci. 6, 415–416 (2013).
    Article Google Scholar
  6. Lewis, N. & Curry, J. A. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dynam. 45, 1009–1023 (2014).
    Article Google Scholar
  7. Mauritsen, T. & Pincus, R. Committed warming inferred from observations. Nat. Clim. Change 7, 652–655 (2017).
    Article Google Scholar
  8. Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 6, 639–640 (2016).
    Article Google Scholar
  9. Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).
    Article Google Scholar
  10. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).
    Article Google Scholar
  11. Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).
    Article Google Scholar
  12. Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).
    Article Google Scholar
  13. Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).
    Article Google Scholar
  14. Kiehl, J. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L22710 (2007).
    Article Google Scholar
  15. Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11, 1101–1116 (2011).
    Article Google Scholar
  16. Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819 (2015).
    Article Google Scholar
  17. Fiedler, S., Stevens, B. & Mauritsen, T. On the sensitivity of anthropogenic aerosol forcing to model-internal variability and parameterizing a twomey effect. J. Adv. Model. Earth Syst. 9, 1325–1341 (2017).
    Article Google Scholar
  18. Gregory, J. M. & Forster, P. M. Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res. Atmos. 113, D23105 (2008).
    Article Google Scholar
  19. Bengtsson, L. & Schwartz, S. E. Determination of a lower bound on Earth’s climate sensitivity. Tellus B 65, 21533 (2013).
    Article Google Scholar
  20. Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 118, 1139–1150 (2013).
    Article Google Scholar
  21. Mauritsen, T. et al. Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2018).
    Article Google Scholar
  22. Gregory, J. M., Andrews, T. & Good, P. The inconstancy of the transient climate response parameter under increasing CO2. Phil. Trans. R. Soc. A 373, 20140417 (2015).
    Article Google Scholar
  23. Gregory, J. M., Andrews, T., Good, P., Mauritsen, T. & Forster, P. M. Small global-mean cooling due to volcanic radiative forcing. Clim. Dynam. 47, 3979–3991 (2016).
    Article Google Scholar
  24. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
  25. Shindell, D. T. et al. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 13, 2939–2974 (2011).
    Article Google Scholar
  26. Regayre, L. A. et al. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett. 41, 9040–9049 (2014).
    Article Google Scholar
  27. Zhao, M. et al. The gfdl global atmosphere and land model am4.0/lm4.0: 1. simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst. 10, 691–734 (2018).
    Article Google Scholar
  28. Hansen, J. et al. Climate response times: Dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985).
    Article Google Scholar
  29. Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. part ii: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J. Clim. 26, 1859–1876 (2013).
    Article Google Scholar
  30. Morice, C. P., Kennedy, J. J. & Rayner, N. A. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 117, D08101 (2012).
    Article Google Scholar
  31. Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).
    Article Google Scholar
  32. Hansen, J. E., Ruedy, R. A., Sato, M. & Lo, K.-W. K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
    Article Google Scholar
  33. Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. 1, 1 (2013).
    Google Scholar
  34. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).
    Article Google Scholar
  35. Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).
    Google Scholar
  36. Jones, C. et al. (eds) in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Annex II (IPCC, Cambridge Univ. Press, 2013).
  37. Boggs, P. T., Byrd, R. H. & Schnabel, R. B. A Stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 8, 1052–1078 (1987).
    Article Google Scholar
  38. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).
    Article Google Scholar
  39. Brient, F. et al. Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Clim. Dynam. 47, 433–449 (2016).
    Article Google Scholar
  40. Stevens, B. et al. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geosci. Model Dev. 10, 433–452 (2017).
    Article Google Scholar

Download references