Scaling up interactive argumentation by providing counterarguments with a chatbot (original) (raw)

References

  1. Public and Scientists’ Views on Science and Society (Pew Research Center, 2015).
  2. Nyhan, B. & Reifler, J. When corrections fail: the persistence of political misperceptions. Polit. Behav. 32, 303–330 (2010).
    Article Google Scholar
  3. Nyhan, B., Reifler, J., Richey, S. & Freed, G. L. Effective messages in vaccine promotion: a randomized trial. Pediatrics 133, e835–e842 (2014).
    Article PubMed Google Scholar
  4. Cook, J. & Lewandowsky, S. The Debunking Handbook (Sevloid Art, 2011).
  5. Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N. & Cook, J. Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest 13, 106–131 (2012).
    Article PubMed Google Scholar
  6. Guess, A. & Coppock, A. Does counter-attitudinal information cause backlash? Results from three large survey experiments. Br. J. Polit. Sci. https://doi.org/10.1017/S0007123418000327 (2018).
  7. Wood, T. & Porter, E. The elusive backfire effect: mass attitudes’ steadfast factual adherence. Polit. Behav. 41, 135–163 (2019).
    Article Google Scholar
  8. Landrum, A. R., Hallman, W. K. & Jamieson, K. H. Examining the impact of expert voices: communicating the scientific consensus on genetically-modified organisms. Environ. Commun. https://doi.org/10.1080/17524032.2018.1502201 (2018).
  9. Dixon. Applying the gateway belief model to genetically modified food perceptions: new insights and additional questions. J. Commun. https://doi.org/10.1111/jcom.12260 (2016).
  10. Kerr, J. R. & Wilson, M. S. Changes in perceived scientific consensus shift beliefs about climate change and GM food safety. PLoS ONE 13, e0200295 (2018).
    Article CAS PubMed PubMed Central Google Scholar
  11. Claidière, N., Trouche, E. & Mercier, H. Argumentation and the diffusion of counter-intuitive beliefs. J. Exp. Psychol. Gen. 146, 1052–1066 (2017).
    Article PubMed Google Scholar
  12. Trouche, E., Sander, E. & Mercier, H. Arguments, more than confidence, explain the good performance of reasoning groups. J. Exp. Psychol. Gen. 143, 1958–1971 (2014).
    Article PubMed Google Scholar
  13. Laughlin, P. R. Group Problem Solving (Princeton Univ. Press, 2011).
  14. Minson, J. A., Liberman, V. & Ross, L. Two to tango. Personal. Soc. Psychol. Bull. 37, 1325–1338 (2011).
    Article Google Scholar
  15. Smith, M. K. et al. Why peer discussion improves student performance on in-class concept questions. Science 323, 122–124 (2009).
    Article CAS PubMed Google Scholar
  16. Mercier, H. The argumentative theory: predictions and empirical evidence. Trends Cogn. Sci. 20, 689–700 (2016).
    Article PubMed Google Scholar
  17. Mercier, H. & Sperber, D. The Enigma of Reason (Harvard Univ. Press, 2017).
  18. Minozzi, W., Neblo, M. A., Esterling, K. M. & Lazer, D. M. Field experiment evidence of substantive, attributional, and behavioral persuasion by members of Congress in online town halls. Proc. Natl Acad. Sci. USA 112, 3937–3942 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  19. Broockman, D. & Kalla, J. Durably reducing transphobia: a field experiment on door-to-door canvassing. Science 352, 220–224 (2016).
    Article CAS PubMed Google Scholar
  20. Altay, S. & Lakhlifi, C. Are science festivals a good place to discuss heated topics? J. Sci. Commun. 19, A07 (2020).
    Article Google Scholar
  21. Chanel, O., Luchini, S., Massoni, S. & Vergnaud, J.-C. Impact of information on intentions to vaccinate in a potential epidemic: swine-origin influenza A (H1N1). Soc. Sci. Med. 72, 142–148 (2011).
    Article PubMed Google Scholar
  22. Resnick, L. B., Salmon, M., Zeitz, C. M., Wathen, S. H. & Holowchak, M. Reasoning in conversation. Cogn. Instr. 11, 347–364 (1993).
    Article Google Scholar
  23. Edwards, K. & Smith, E. E. A disconfirmation bias in the evaluation of arguments. J. Personal. Soc. Psychol. 71, 5–24 (1996).
    Article Google Scholar
  24. Greenwald, A. G. in Psychological Foundations of Attitudes (eds. Greenwald, A. G., Brock, T. C. & Ostrom, T. M.) 147–170 (Academic Press, 1968).
  25. Taber, C. S. & Lodge, M. Motivated skepticism in the evaluation of political beliefs. Am. J. Polit. Sci. 50, 755–769 (2006).
    Article Google Scholar
  26. Trouche, E., Shao, J. & Mercier, H. Objective evaluation of demonstrative arguments. Argumentation 33, 23–43 (2019).
    Article Google Scholar
  27. Mercier, H., Bonnier, P. & Trouche, E. in Cognitive Unconscious and Human Rationality (eds. Macchi, L., Bagassi, M. & Viale, R.) 205–218 (MIT Press, 2016).
  28. Fay, N., Garrod, S. & Carletta, J. Group discussion as interactive dialogue or as serial monologue: the influence of group size. Psychol. Sci. 11, 481–486 (2000).
    Article CAS PubMed Google Scholar
  29. Krems, J. A. & Wilkes, J. Why are conversations limited to about four people? A theoretical exploration of the conversation size constraint. Evol. Hum. Behav. 40, 140–147 (2019).
    Article Google Scholar
  30. Andrews, P., Manandhar, S. & De Boni, M. in Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue 138–147 (2008). https://doi.org/10.3115/1622064.1622093
  31. Rosenfeld, A. & Kraus, S. in Proceedings of the Twenty-Second European Conference on Artificial Intelligence 320–328 (IOS Press, 2016). https://doi.org/10.3233/978-1-61499-672-9-320
  32. Chalaguine, L. A., Hunter, A., Hamilton, F. L. & Potts, H. W. Impact of argument type and concerns in argumentation with a chatbot. in 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) https://doi.org/10.1109/ICTAI.2019.00224 (2019).
  33. Baulcombe, D., Dunwell, J., Jones, J., Pickett, J. & Puigdomenech, P. GM Science Update: a Report to the Council for Science and Technology (2014). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/292174/cst-14-634a-gm-science-update.pdf
  34. A Decade of EU-Funded GMO Research (European Commission, 2010).
  35. National Academies of Sciences and Medicine. Genetically Engineered Crops: Experiences and Prospects (National Academies Press, 2016).
  36. Nicolia, A., Manzo, A., Veronesi, F. & Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 34, 77–88 (2014).
    Article CAS PubMed Google Scholar
  37. Ronald, P. Plant genetics, sustainable agriculture and global food security. Genetics 188, 11–20 (2011).
    Article PubMed PubMed Central Google Scholar
  38. Statement by the AAAS Board of Directors on Labeling of Genetically Modified Foods (American Assoication for the Advancement of Science, 2012).
  39. Yang, Y. T. & Chen, B. Governing GMOs in the USA: science, law and public health. J. Sci. Food Agric. 96, 1851–1855 (2016).
    Article CAS PubMed Google Scholar
  40. Bonny, S. Why are most Europeans opposed to GMOs?: factors explaining rejection in France and Europe. Electron. J. Biotechnol. 6, 7–8 (2003).
    Article Google Scholar
  41. Cui, K. & Shoemaker, S. P. Public perception of genetically-modified (GM) food: a nationwide Chinese consumer study. npj Sci. Food 2, 10 (2018).
    Article PubMed PubMed Central Google Scholar
  42. Gaskell, G., Bauer, M. W., Durant, J. & Allum, N. C. Worlds apart? The reception of genetically modified foods in Europe and the US. Science 285, 384–387 (1999).
    Article CAS PubMed Google Scholar
  43. Scott, S. E., Inbar, Y. & Rozin, P. Evidence for absolute moral opposition to genetically modified food in the United States. Perspect. Psychol. Sci. 11, 315–324 (2016).
    Article PubMed Google Scholar
  44. Baromètre sur la Perception des Risques et de la Sécurité par les Français (IRSN, 2017).
  45. Les Français et les OGM (Ifop, 2012).
  46. Burke, D. GM food and crops: what went wrong in the UK? EMBO Rep. 5, 432–436 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  47. Poortinga, W. & Pidgeon, N. Public Perceptions of Genetically Modified Food and Crops, and the GM Nation? Public Debate on the Commercialisation of Agricultural Biotechnology in the UK: Main Findings of a British Survey (Centre for Environmental Risk, 2004).
  48. Cordon, G. GM crops opposition may have been ‘over-estimated’. The Scotsman (19 February 2004).
  49. Bonny, S. Will Biotechnology Lead to More Sustainable Agriculture? in Proc. of NE-165 Conference (2000).
  50. Hielscher, S., Pies, I., Valentinov, V. & Chatalova, L. Rationalizing the GMO debate: the ordonomic approach to addressing agricultural myths. Int. J. Environ. Res. Public Health 13, 476 (2016).
    Article PubMed Central Google Scholar
  51. Ding, D., Maibach, E. W., Zhao, X., Roser-Renouf, C. & Leiserowitz, A. Support for climate policy and societal action are linked to perceptions about scientific agreement. Nat. Clim. Change 1, 462 (2011).
    Article Google Scholar
  52. Dunwoody, S. & Kohl, P. A. Using weight-of-experts messaging to communicate accurately about contested science. Sci. Commun. 39, 338–357 (2017).
    Article Google Scholar
  53. Kohl, P. A. et al. The influence of weight-of-evidence strategies on audience perceptions of (un)certainty when media cover contested science. Public Understand. Sci. 25, 976–991 (2016).
    Article Google Scholar
  54. Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change 3, 399–404 (2013).
    Article Google Scholar
  55. van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10, e0118489 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  56. van der Linden, S. L., Leiserowitz, A. & Maibach, E. Gateway illusion or cultural cognition confusion? J. Sci. Commun. https://doi.org/10.22323/2.16050204 (2017).
  57. Petty, R. E. & Cacioppo, J. T. in Advances in Experimental Social Psychology (ed. Berkowitz, L.) 123–205 (Academic Press., 1986).
  58. Petty, R. E. & Cacioppo, J. T. The effects of involvement on responses to argument quantity and quality: central and peripheral routes to persuasion. J. Personal. Soc. Psychol. 46, 69 (1984).
    Article Google Scholar
  59. Ecker, U. K. H. & Ang, L. C. Political attitudes and the processing of misinformation corrections. Polit. Psychol. 40, 241–260 (2019).
    Article Google Scholar
  60. Kahan, D. Ideology, motivated reasoning, and cognitive reflection. Judgm. Decis. Mak. 8, 407–424 (2013).
    Google Scholar
  61. Kahan, D., Jenkins-Smith, H. & Braman, D. Cultural cognition of scientific consensus. J. Risk Res. 14, 147–174 (2011).
    Article Google Scholar
  62. Schmid, P. & Betsch, C. Effective strategies for rebutting science denialism in public discussions. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0632-40 (2019).
  63. van der Linden, S., Leiserowitz, A. & Maibach, E. The gateway belief model: a large-scale replication. J. Environ. Psychol. 62, 49–58 (2019).
    Article Google Scholar
  64. van der Linden, S., Maibach, E. & Leiserowitz, A. Exposure to scientific consensus does not cause psychological reactance. Environ. Commun. https://doi.org/10.1080/17524032.2019.1617763 (2019).
  65. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. Mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 5 (2014).
  66. Bullock, J. G., Green, D. P. & Ha, S. E. Yes, but what’s the mechanism? (don’t expect an easy answer). J. Personal. Soc. Psychol. 98, 550–558 (2010).
    Article Google Scholar
  67. McPhetres, J., Rutjens, B. T., Weinstein, N. & Brisson, J. A. Modifying attitudes about modified foods: increased knowledge leads to more positive attitudes. J. Environ. Psychol https://doi.org/10.1016/j.jenvp.2019.04.012 (2019).
  68. Hasell, A., Lyons, B. A., Tallapragada, M. & Jamieson, K. H. Improving GM consensus acceptance through reduced reactance and climate change-based message targeting. Environ. Commun. https://doi.org/10.1080/17524032.2020.1746377 (2020).
  69. Altay, S., Hacquin, A.-S., Chevallier, C. & Mercier, H. Information delivered by a chatbot has a positive impact on COVID-19 vaccines attitudes and intentions. J. Exp. Psychol. Appl. https://doi.org/10.1037/xap0000400 (2021).
  70. Swire-Thompson, B., DeGutis, J. & Lazer, D. Searching for the backfire effect: measurement and design considerations. https://doi.org/10.1016/j.jarmac.2020.06.006 (2020).
  71. Bode, L., Vraga, E. K. & Tully, M. Correcting misperceptions about genetically modified food on social media: examining the impact of experts, social media heuristics, and the gateway belief model. Sci. Commun. 43, 225–251 (2021).
    Article Google Scholar
  72. Bode, L. & Vraga, E. K. In related news, that was wrong: the correction of misinformation through related stories functionality in social media. J. Commun. 65, 619–638 (2015).
    Article Google Scholar
  73. Vraga, E. K. & Bode, L. Using expert sources to correct health misinformation in social media. Sci. Commun. 39, 621–645 (2017).
    Article Google Scholar
  74. Coppock, A., Leeper, T. J. & Mullinix, K. J. Generalizability of heterogeneous treatment effect estimates across samples. Proc. Natl Acad. Sci. USA 115, 12441–12446 (2018).
    Article CAS PubMed PubMed Central Google Scholar
  75. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res Methods 39, 175–191 (2007).
    Article PubMed Google Scholar
  76. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Lawrence Erlbaum Assoicates, 1988).
  77. Bonny, S. Factors explaining opposition to GMOs in France and the rest of Europe. Consumer Acceptance of Genetically Modified Foods 169 (2004).
  78. Evenson, R. E. & Santaniello, V. Consumer Acceptance of Genetically Modified Foods (CABI, 2004).
  79. McHughen, A. & Wager, R. Popular misconceptions: agricultural biotechnology. N. Biotechnol. 27, 724–728 (2010).
    Article CAS PubMed Google Scholar
  80. Parrott, W. Genetically modified myths and realities. N. Biotechnol. 27, 545–551 (2010).
    Article CAS PubMed Google Scholar
  81. Blancke, S., Van Breusegem, F., De Jaeger, G., Braeckman, J. & Van Montagu, M. Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2015.03.011 (2015).
  82. Key, S., Ma, J. K. & Drake, P. M. Genetically modified plants and human health. J. R. Soc. Med. 101, 290–298 (2008).
    Article PubMed PubMed Central Google Scholar
  83. Klümper, W. & Qaim, M. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9, e111629 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  84. Pellegrino, E., Bedini, S., Nuti, M. & Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci. Rep. 8, 3113 (2018).
    Article CAS PubMed PubMed Central Google Scholar
  85. Snell, C. et al. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem. Toxicol. 50, 1134–1148 (2012).
    Article CAS PubMed Google Scholar
  86. Brysbaert, M. How many words do we read per minute? A review and meta-analysis of reading rate. J. Mem. Lang. https://doi.org/10.1016/j.jml.2019.104047 (2019).
  87. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
  88. RStudio: Integrated Development for R (RStudio, 2015).
  89. Bretz, F., Hothorn, T. & Westfall, P. Multiple Comparisons Using R (CRC Press, 2016).
  90. Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 (2017).
    Article PubMed PubMed Central Google Scholar
  91. Campbell, H. Equivalence testing for standardized effect sizes in linear regression. arXiv https://arxiv.org/abs/2004.01757 (2020).
  92. Morey, R. D., Rouder, J. N., Jamil, T. & Morey, M. R. D. Package ‘bayesfactor’. http://www.cran/r-projectorg/web/packages/BayesFactor/BayesFactorpdfi (2015).

Download references