Scaling up interactive argumentation by providing counterarguments with a chatbot (original) (raw)
References
Public and Scientists’ Views on Science and Society (Pew Research Center, 2015).
Nyhan, B. & Reifler, J. When corrections fail: the persistence of political misperceptions. Polit. Behav.32, 303–330 (2010). Article Google Scholar
Nyhan, B., Reifler, J., Richey, S. & Freed, G. L. Effective messages in vaccine promotion: a randomized trial. Pediatrics133, e835–e842 (2014). ArticlePubMed Google Scholar
Cook, J. & Lewandowsky, S. The Debunking Handbook (Sevloid Art, 2011).
Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N. & Cook, J. Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest13, 106–131 (2012). ArticlePubMed Google Scholar
Guess, A. & Coppock, A. Does counter-attitudinal information cause backlash? Results from three large survey experiments. Br. J. Polit. Sci.https://doi.org/10.1017/S0007123418000327 (2018).
Wood, T. & Porter, E. The elusive backfire effect: mass attitudes’ steadfast factual adherence. Polit. Behav.41, 135–163 (2019). Article Google Scholar
Landrum, A. R., Hallman, W. K. & Jamieson, K. H. Examining the impact of expert voices: communicating the scientific consensus on genetically-modified organisms. Environ. Commun.https://doi.org/10.1080/17524032.2018.1502201 (2018).
Dixon. Applying the gateway belief model to genetically modified food perceptions: new insights and additional questions. J. Commun.https://doi.org/10.1111/jcom.12260 (2016).
Kerr, J. R. & Wilson, M. S. Changes in perceived scientific consensus shift beliefs about climate change and GM food safety. PLoS ONE13, e0200295 (2018). ArticleCASPubMedPubMed Central Google Scholar
Claidière, N., Trouche, E. & Mercier, H. Argumentation and the diffusion of counter-intuitive beliefs. J. Exp. Psychol. Gen.146, 1052–1066 (2017). ArticlePubMed Google Scholar
Trouche, E., Sander, E. & Mercier, H. Arguments, more than confidence, explain the good performance of reasoning groups. J. Exp. Psychol. Gen.143, 1958–1971 (2014). ArticlePubMed Google Scholar
Laughlin, P. R. Group Problem Solving (Princeton Univ. Press, 2011).
Minson, J. A., Liberman, V. & Ross, L. Two to tango. Personal. Soc. Psychol. Bull.37, 1325–1338 (2011). Article Google Scholar
Smith, M. K. et al. Why peer discussion improves student performance on in-class concept questions. Science323, 122–124 (2009). ArticleCASPubMed Google Scholar
Mercier, H. The argumentative theory: predictions and empirical evidence. Trends Cogn. Sci.20, 689–700 (2016). ArticlePubMed Google Scholar
Mercier, H. & Sperber, D. The Enigma of Reason (Harvard Univ. Press, 2017).
Minozzi, W., Neblo, M. A., Esterling, K. M. & Lazer, D. M. Field experiment evidence of substantive, attributional, and behavioral persuasion by members of Congress in online town halls. Proc. Natl Acad. Sci. USA112, 3937–3942 (2015). ArticleCASPubMedPubMed Central Google Scholar
Broockman, D. & Kalla, J. Durably reducing transphobia: a field experiment on door-to-door canvassing. Science352, 220–224 (2016). ArticleCASPubMed Google Scholar
Altay, S. & Lakhlifi, C. Are science festivals a good place to discuss heated topics? J. Sci. Commun.19, A07 (2020). Article Google Scholar
Chanel, O., Luchini, S., Massoni, S. & Vergnaud, J.-C. Impact of information on intentions to vaccinate in a potential epidemic: swine-origin influenza A (H1N1). Soc. Sci. Med.72, 142–148 (2011). ArticlePubMed Google Scholar
Resnick, L. B., Salmon, M., Zeitz, C. M., Wathen, S. H. & Holowchak, M. Reasoning in conversation. Cogn. Instr.11, 347–364 (1993). Article Google Scholar
Edwards, K. & Smith, E. E. A disconfirmation bias in the evaluation of arguments. J. Personal. Soc. Psychol.71, 5–24 (1996). Article Google Scholar
Greenwald, A. G. in Psychological Foundations of Attitudes (eds. Greenwald, A. G., Brock, T. C. & Ostrom, T. M.) 147–170 (Academic Press, 1968).
Taber, C. S. & Lodge, M. Motivated skepticism in the evaluation of political beliefs. Am. J. Polit. Sci.50, 755–769 (2006). Article Google Scholar
Trouche, E., Shao, J. & Mercier, H. Objective evaluation of demonstrative arguments. Argumentation33, 23–43 (2019). Article Google Scholar
Mercier, H., Bonnier, P. & Trouche, E. in Cognitive Unconscious and Human Rationality (eds. Macchi, L., Bagassi, M. & Viale, R.) 205–218 (MIT Press, 2016).
Fay, N., Garrod, S. & Carletta, J. Group discussion as interactive dialogue or as serial monologue: the influence of group size. Psychol. Sci.11, 481–486 (2000). ArticleCASPubMed Google Scholar
Krems, J. A. & Wilkes, J. Why are conversations limited to about four people? A theoretical exploration of the conversation size constraint. Evol. Hum. Behav.40, 140–147 (2019). Article Google Scholar
Andrews, P., Manandhar, S. & De Boni, M. in Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue 138–147 (2008). https://doi.org/10.3115/1622064.1622093
Rosenfeld, A. & Kraus, S. in Proceedings of the Twenty-Second European Conference on Artificial Intelligence 320–328 (IOS Press, 2016). https://doi.org/10.3233/978-1-61499-672-9-320
Chalaguine, L. A., Hunter, A., Hamilton, F. L. & Potts, H. W. Impact of argument type and concerns in argumentation with a chatbot. in 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)https://doi.org/10.1109/ICTAI.2019.00224 (2019).
A Decade of EU-Funded GMO Research (European Commission, 2010).
National Academies of Sciences and Medicine. Genetically Engineered Crops: Experiences and Prospects (National Academies Press, 2016).
Nicolia, A., Manzo, A., Veronesi, F. & Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol.34, 77–88 (2014). ArticleCASPubMed Google Scholar
Statement by the AAAS Board of Directors on Labeling of Genetically Modified Foods (American Assoication for the Advancement of Science, 2012).
Yang, Y. T. & Chen, B. Governing GMOs in the USA: science, law and public health. J. Sci. Food Agric.96, 1851–1855 (2016). ArticleCASPubMed Google Scholar
Bonny, S. Why are most Europeans opposed to GMOs?: factors explaining rejection in France and Europe. Electron. J. Biotechnol.6, 7–8 (2003). Article Google Scholar
Cui, K. & Shoemaker, S. P. Public perception of genetically-modified (GM) food: a nationwide Chinese consumer study. npj Sci. Food2, 10 (2018). ArticlePubMedPubMed Central Google Scholar
Gaskell, G., Bauer, M. W., Durant, J. & Allum, N. C. Worlds apart? The reception of genetically modified foods in Europe and the US. Science285, 384–387 (1999). ArticleCASPubMed Google Scholar
Scott, S. E., Inbar, Y. & Rozin, P. Evidence for absolute moral opposition to genetically modified food in the United States. Perspect. Psychol. Sci.11, 315–324 (2016). ArticlePubMed Google Scholar
Baromètre sur la Perception des Risques et de la Sécurité par les Français (IRSN, 2017).
Poortinga, W. & Pidgeon, N. Public Perceptions of Genetically Modified Food and Crops, and the GM Nation? Public Debate on the Commercialisation of Agricultural Biotechnology in the UK: Main Findings of a British Survey (Centre for Environmental Risk, 2004).
Cordon, G. GM crops opposition may have been ‘over-estimated’. The Scotsman (19 February 2004).
Bonny, S. Will Biotechnology Lead to More Sustainable Agriculture? in Proc. of NE-165 Conference (2000).
Hielscher, S., Pies, I., Valentinov, V. & Chatalova, L. Rationalizing the GMO debate: the ordonomic approach to addressing agricultural myths. Int. J. Environ. Res. Public Health13, 476 (2016). ArticlePubMed Central Google Scholar
Ding, D., Maibach, E. W., Zhao, X., Roser-Renouf, C. & Leiserowitz, A. Support for climate policy and societal action are linked to perceptions about scientific agreement. Nat. Clim. Change1, 462 (2011). Article Google Scholar
Dunwoody, S. & Kohl, P. A. Using weight-of-experts messaging to communicate accurately about contested science. Sci. Commun.39, 338–357 (2017). Article Google Scholar
Kohl, P. A. et al. The influence of weight-of-evidence strategies on audience perceptions of (un)certainty when media cover contested science. Public Understand. Sci.25, 976–991 (2016). Article Google Scholar
Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change3, 399–404 (2013). Article Google Scholar
van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE10, e0118489 (2015). ArticleCASPubMedPubMed Central Google Scholar
van der Linden, S. L., Leiserowitz, A. & Maibach, E. Gateway illusion or cultural cognition confusion? J. Sci. Commun.https://doi.org/10.22323/2.16050204 (2017).
Petty, R. E. & Cacioppo, J. T. in Advances in Experimental Social Psychology (ed. Berkowitz, L.) 123–205 (Academic Press., 1986).
Petty, R. E. & Cacioppo, J. T. The effects of involvement on responses to argument quantity and quality: central and peripheral routes to persuasion. J. Personal. Soc. Psychol.46, 69 (1984). Article Google Scholar
Ecker, U. K. H. & Ang, L. C. Political attitudes and the processing of misinformation corrections. Polit. Psychol.40, 241–260 (2019). Article Google Scholar
Kahan, D. Ideology, motivated reasoning, and cognitive reflection. Judgm. Decis. Mak.8, 407–424 (2013). Google Scholar
Kahan, D., Jenkins-Smith, H. & Braman, D. Cultural cognition of scientific consensus. J. Risk Res.14, 147–174 (2011). Article Google Scholar
van der Linden, S., Leiserowitz, A. & Maibach, E. The gateway belief model: a large-scale replication. J. Environ. Psychol.62, 49–58 (2019). Article Google Scholar
van der Linden, S., Maibach, E. & Leiserowitz, A. Exposure to scientific consensus does not cause psychological reactance. Environ. Commun.https://doi.org/10.1080/17524032.2019.1617763 (2019).
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. Mediation: R package for causal mediation analysis. J. Stat. Softw.59, 5 (2014).
Bullock, J. G., Green, D. P. & Ha, S. E. Yes, but what’s the mechanism? (don’t expect an easy answer). J. Personal. Soc. Psychol.98, 550–558 (2010). Article Google Scholar
McPhetres, J., Rutjens, B. T., Weinstein, N. & Brisson, J. A. Modifying attitudes about modified foods: increased knowledge leads to more positive attitudes. J. Environ. Psycholhttps://doi.org/10.1016/j.jenvp.2019.04.012 (2019).
Hasell, A., Lyons, B. A., Tallapragada, M. & Jamieson, K. H. Improving GM consensus acceptance through reduced reactance and climate change-based message targeting. Environ. Commun.https://doi.org/10.1080/17524032.2020.1746377 (2020).
Altay, S., Hacquin, A.-S., Chevallier, C. & Mercier, H. Information delivered by a chatbot has a positive impact on COVID-19 vaccines attitudes and intentions. J. Exp. Psychol. Appl.https://doi.org/10.1037/xap0000400 (2021).
Bode, L., Vraga, E. K. & Tully, M. Correcting misperceptions about genetically modified food on social media: examining the impact of experts, social media heuristics, and the gateway belief model. Sci. Commun.43, 225–251 (2021). Article Google Scholar
Bode, L. & Vraga, E. K. In related news, that was wrong: the correction of misinformation through related stories functionality in social media. J. Commun.65, 619–638 (2015). Article Google Scholar
Vraga, E. K. & Bode, L. Using expert sources to correct health misinformation in social media. Sci. Commun.39, 621–645 (2017). Article Google Scholar
Coppock, A., Leeper, T. J. & Mullinix, K. J. Generalizability of heterogeneous treatment effect estimates across samples. Proc. Natl Acad. Sci. USA115, 12441–12446 (2018). ArticleCASPubMedPubMed Central Google Scholar
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res Methods39, 175–191 (2007). ArticlePubMed Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Lawrence Erlbaum Assoicates, 1988).
Bonny, S. Factors explaining opposition to GMOs in France and the rest of Europe. Consumer Acceptance of Genetically Modified Foods 169 (2004).
Evenson, R. E. & Santaniello, V. Consumer Acceptance of Genetically Modified Foods (CABI, 2004).
McHughen, A. & Wager, R. Popular misconceptions: agricultural biotechnology. N. Biotechnol.27, 724–728 (2010). ArticleCASPubMed Google Scholar
Blancke, S., Van Breusegem, F., De Jaeger, G., Braeckman, J. & Van Montagu, M. Fatal attraction: the intuitive appeal of GMO opposition. Trends Plant Sci.https://doi.org/10.1016/j.tplants.2015.03.011 (2015).
Pellegrino, E., Bedini, S., Nuti, M. & Ercoli, L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci. Rep.8, 3113 (2018). ArticleCASPubMedPubMed Central Google Scholar
Snell, C. et al. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem. Toxicol.50, 1134–1148 (2012). ArticleCASPubMed Google Scholar
R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
RStudio: Integrated Development for R (RStudio, 2015).
Bretz, F., Hothorn, T. & Westfall, P. Multiple Comparisons Using R (CRC Press, 2016).
Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci.8, 355–362 (2017). ArticlePubMedPubMed Central Google Scholar
Campbell, H. Equivalence testing for standardized effect sizes in linear regression. arXivhttps://arxiv.org/abs/2004.01757 (2020).